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Abstract
In this paper, we show that the eigenvalues and eigenvectors of the spectral discreti-
sation matrices resulting from the Legendre dual-Petrov-Galerkin (LDPG) method
for the mth-order initial value problem (IVP): u(m)(t) = σu(t), t ∈ (−1, 1) with
constant σ �= 0 and usual initial conditions at t= −1, are associated with the gen-
eralised Bessel polynomials (GBPs). In particular, we derive analytical formulae for
the eigenvalues and eigenvectors in the cases m= 1, 2. As a by-product, we are able
to answer some open questions related to the collocation method at Legendre points
(extensively studied in the 1980s) for the first-order IVP, by reformulating it into a
Petrov-Galerkin formulation. Our results have direct bearing on the CFL conditions of
time-stepping schemeswith spectral or spectral-element discretisation in space.More-
over, we present two stable algorithms for computing zeros of the GBPs and develop
a general space-time method for evolutionary PDEs. We provide ample numerical
results to demonstrate the high accuracy and robustness of the space-time methods for
some interesting examples of linear and nonlinear wave problems.
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1 Introduction

Spectral methods are a class of numerical methods which use global orthogonal poly-
nomials/functions as basis functions and have gainedmuch popularity due to their high
accuracy for problems with solutions that are smooth in suitable functional spaces [2,
3, 22]. However, spectral methods aremostly used in spatial discretisations, while time
discretisations are usually done with traditional approaches such as implicit-explicit
schemes, explicit Runge–Kutta methods [10], or spline method [14] which are of
fixed-order convergence rates, thus creating a mismatch between spectral accuracy
in space and usually lower-order accuracy in time. In practice, space-time spectral
methods are attractive for problems with dynamics that require high resolution in both
space and time, e.g., oscillatory wave propagations.

Several attempts have been made in developing spectral methods in time. Tal-Ezer
[25, 26] first studied Chebyshev spectral methods in time for linear hyperbolic and
parabolic problems. Tang and Ma [27] presented a Legendre-Tau spectral method in
time for parabolic PDEs with periodic boundary conditions in space and later in [28]
for hyperbolic problems in a similar setting. Shen and Wang [11] proposed a Fouri-
erization space-time Legendre spectral method for parabolic equations. Recently, Lui
[15] investigated a space-time Legendre spectral collocation method for the heat equa-
tion. Shen and Sheng [21] developed a space-time dual-Petrov-Galerkin method for
fractional (in time) subdiffusion equations and adopted a QZ decomposition technique
to overcome the extreme ill-conditioningwhen the eigen-decomposition is used. How-
ever, a theoretical foundation for such methods is still lacking. It is known that the
eigenvalue distribution of the spectral differentiationmatrices plays a central role in the
stability and round-off error of the underlying spectral method. While the eigenvalue
distribution of spectral approximation to second-order BVPs was well established [1,
7, 32, 33], very little is known about the eigenvalue distribution of spectral approxi-
mation to IVPs; particularly, no results appear available for higher-order IVPs.

Unlike the second-order operators for BVPs, spectral approximations to the deriva-
tive operators of IVPs can be problematic. In particular, the derivative matrices are
usually non-normal, which typically requiremore stringent conditions for the stability.
We refer to Gottlieb and Orszag [8] for insightful stability analysis of spectral approx-
imations to first-order hyperbolic problems and briefly review the existing findings
(mostly on asymptotic eigenvalue analysis of first-order spectral discretisation matri-
ces in 1980s). Dubiner [6] conducted an asymptotic analysis of the spectral-taumethod
for a prototype problem: find λ ∈ C and uN ∈ PN = span{xk : 0 ≤ k ≤ N } such that

u′
N (x) − λuN (x) = pN (x), x ∈ (−1, 1); uN (1) = 0, (1.1)
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Eigenvalue analysis and applications of the Legendre...

where pN (x) is a polynomial of degree N . In particular, for the Jacobi-tau approxi-
mation,

∫ 1

−1

(
u′
N − λuN

)
(x)v(x)(1 − x)α(1 + x)βdx = 0, ∀ v ∈ PN−1,

we have pN (x) = τ P(α,β)
N (x) (with any constant τ �= 0), in view of the orthogonality

of Jacobi polynomials and u′
N − λuN ∈ PN . Dubiner [6] showed that for β > −1,

λN
i = O(N 2), if α ∈ (−1, 1] \ {0}; λN

i = O(N ), if α = 0.

According to [4], all eigenvalues lie in the left half-plane. Following [6], Wang and
Waleffe [30] further proved the existence of unstable eigenvalues for α > 1, and the
eigenvalues of the Legendre case are zeros of the modified Bessel function kN (z),
drawn from the property kN (z) = z−1e−z ∑N

k=0 P
(k)
N (1)z−k and its relation with the

characteristic polynomial of (1.1).
Tal-Ezer [24] and Trefethen and Trummer [29] discovered that eigenvalues of the

spectral differentiation matrix of the collocation methods for the first-order IVP at the
Legendre points (see (3.11)) behave like λN

i = O(N ), but λN
i = O(N 2) at Chebyshev

and other Jacobi points. Accordingly, the allowable time-step size in the explicit time
discretisation of the hyperbolic problem is O(N−1), rather than O(N−2) for the
Chebyshev and other Jacobi collocation methods. However, numerical evidences in
[29] indicated that the Legendre collocation approximation with O(N−1) time-step
constraint appeared only in theory, but subject to an O(N−2) restriction in practice.
Moreover, the computation of the eigenvalues is precision-dependent and is extremely
sensitive to perturbations/round-off errors, e.g., the use of EISPACK could produce
reliable eigenvalues for N ≤ 28 with double-precision calculations [29]. Here, we
demonstrate in Fig. 1 the eigenvalues computed by eig(D) in Matlab, where the
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Fig. 1 Eigenvalue distributions of the first-order differentiation matrix on Legendre points with N = 28
(left) and N = 56 (right). The red circles denote the reference values, and the black dots denote the
eigenvalues computed in double precision
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reference eigenvalues are computed by the algorithm in Pasquini [18] for computing
the zeros of the GBP (see Theorem 3.2 and Sect. 6). The numerical study in [29] gave
rise to open questions, e.g., on the identifications of eigenvalues and eigenvectors, and
rigorous proof of the exponential growth of the condition number of the eigenvector
matrix.

The objective of this paper is to conduct rigorous eigenvalue analysis of the spectral
matrices resulted from LDPG spectral methods for the first-order and general mth-
order IVPs. The argument of the analysis andmain findings are summarised as follows.

(i) We properly construct the basis polynomials for the solution and dual approxima-
tion spaces so that the matrix of the highest derivative term is an identity matrix,
but the mass matrix is a non-normal sparse matrix. This enables us to associate
the mass matrix with the Jacobi matrix corresponding to the three-term recur-
rence relation of the Bessel or generalised Bessel polynomials and then identify
the eigenvalues and eigenvectors.

(ii) We reformulate the collocation method on Legendre points (cf. [24, 29]) as a
Petrov-Galerkin formulation that allows us to identify eigen-pairs of the spectral
differentiation matrix via the usual Bessel polynomials (BPs). Then, we can
answer some open questions in [29] and locate the eigenvalues from an approach
different from [30]. In particular, the distribution of eigenvalues has direct bearing
on theCFL conditions of time-stepping schemeswith spectral or spectral-element
discretisation in space.

(iii) We introduce two techniques to effectively deal with the time discretisation by the
LDPG spectral method, which include (i) diagonalisation technique and (ii) QZ
decomposition. Due to the severe ill-conditioning of the eigenvector matrix, the
diagonalisation technique, which involves the inverse of the eigenvector matrix,
is only numerically stable for smallN, so combine it with a multi-domain spectral
method to march in time sequentially. On the other hand, the QZ decomposition
for such non-normal matrices is numerically stable for large N , and we can solve
the resulted linear systems simply by backward substitutions.

Finally, we remark that there has been a continuing interest in solving evolutionary
equations in a parallel-in-time (PinT) manner based on the diagonalisation technique
initiated by Maday and Rønquist [16]; see, for instance, a recent work [13] on a
well-conditioned parallel-in-time algorithm involving the diagonalisation of a nearly
skew-symmetric matrix resulted with a modified time-difference scheme. Our LDPG
method with diagonalisation can be directly applied in a parallel-in-time manner,
although in practice we also need to combine it with a multi-time-domain approach,
since we can only deal with a relatively short time interval in parallel due to the
ill-conditioning limitation mentioned above.

The rest of this paper is organised as follows. In Section 2, we collect some related
properties of theGBPs andLegendre polynomials. In Section 3,we conduct eigenvalue
analysis for the LDPG spectral method for the first-order IVP and reformulate the
collocation method on Legendre points [24, 29] as a Petrov-Galerkin formulation to
precisely characterise the eigenvalue distributions and the associated eigenvectors.
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We extend the analysis to the second-order IVPs in Section 4 and higher-order IVPs
in Section 5. We present two stable algorithms for computing zeros of the GBPs in
Section 6. In Section 7, we develop a general framework for space-timemethodswith a
LDPG discretisation in time and apply it to solve linear and nonlinear wave problems.
We conclude the paper with some final remarks in Section 8.

2 Properties of GBPs and Legendre polynomials

The forthcoming eigenvalue analysis relies much on the GBPs, so we collect below
some relevant properties, which can be found in [9, 12, 18]. We also review some
properties of Legendre polynomials to be used later on. Throughout this paper, let C
(resp.R) be the set of all complex (resp. real) numbers, and further, letN = {1, 2, · · · }
and N0 = {0, 1, 2, · · · }.

2.1 Generalised Bessel polynomials

For α, β ∈ C,−α /∈ N0 and β �= 0, the GBP, denoted by B(α,β)
n (z), z ∈ C, is a

polynomial of degree n that satisfies the second-order differential equation

z2y′′(z) + (αz + β)y′(z) = n(n + α − 1)y(z), n ∈ N0, (2.1)

which has the explicit representation

B(α,β)
n (z) =

n∑
k=0

(
n

k

)
�(n + k + α − 1)

�(n + α − 1)

( z

β

)k
. (2.2)

The GBPs can be generated by the three-term recurrence relation

⎧⎨
⎩
B(α,β)
n+1 (z) =

(
a(α)
n

z
β

+ b(α)
n

)
B(α,β)
n (z) + c(α)

n B(α,β)
n−1 (z), n ≥ 1,

B(α,β)
0 (z) = 1, B(α,β)

1 (z) = 1 + α z
β
,

(2.3)

where

a(α)
n = (2n + α)(2n + α − 1)

n + α − 1
, b(α)

n = (α − 2)(2n + α − 1)

(n + α − 1)(2n + α − 2)
,

c(α)
n = n(2n + α)

(n + α − 1)(2n + α − 2)
. (2.4)

Here, the normalisation B(α,β)
n (0) = 1 is adopted.
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The GBPs are orthogonal on the unit circle (see [9, p. 30]):

1

2π i

∫
|z|=1

B(α,β)
m (z)B(α,β)

n (z)ρ(α,β)(z)dz = γ (α,β)
n δmn, (2.5)

where the weight function and the normalisation constant are given by

ρ(α,β)(z) :=
∞∑
k=0

�(α)

�(k + α − 1)

(
− β

z

)k = 1F1(1, α − 1;−β/z),

γ (α,β)
n := (−1)n+1β�(α)n!

(2n + α − 1)�(n + α − 1)
. (2.6)

Here, 1F1( ) is the hypergeometric function.
Observe from (2.2)-(2.3) that the parameter β plays a role as a scaling factor, and

there holds
B(α,−β)
n (z) = B(α,β)

n (−z).

For simplicity, we denote the GBP with β = 2 by B(α)
n (z) := B(α,2)

n (z). When
α = β = 2, the GBPs reduce to the classical Bessel polynomials (BPs), denoted by
Bn(z) := B(2,2)

n (z). Accordingly, the recurrence relation (2.3)-(2.4) becomes

{
Bn+1(z) = (2n + 1)zBn(z) + Bn−1(z), n ≥ 1,

B0(z) = 1, B1(z) = 1 + z.
(2.7)

Moreover, the orthogonality (2.5)-(2.6) simply reads

1

2π i

∫
|z|=1

Bm(z)Bn(z)e
−2/zdz = (−1)n+1 2

2n + 1
δmn .

We summarize the most important properties on zero distributions of GBPs below.

Theorem 2.1 Let α ∈ R and n + α − 1 > 0. Then, we have the following properties.

(i) All zeros of B(α)
n (z) are simple and conjugate of each other.

(ii) For α ≥ −1 and n ≥ 2, all zeros of B(α)
n (z) are in the open left half-plane.

(iii) For n ≥ 2, all zeros are located in the crescent-shaped region

R−
n,α :=

{
z = ρeiθ ∈ C : 2

2n + α − 2
3

< ρ ≤ 1 − cos θ

n + α − 1
, θ ∈ (−π,−n,α) ∪ (n,α, π ]

}
,

(2.8)
where the equal sign can be attained only θ = π, and

n,α := arccos
( −α

2n + α − 2

)
. (2.9)
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Proof According to [9, Theorem 1′], all zeros of B(α)
n (z) are simple. As B(α)

n (z) is
a polynomial of real coefficients, its zeros are conjugate of each other. The second
statement is presented in [5, Theorem 4.3]. In fact, this result is sharp in the sense
that for α < −1, the polynomial B(α)

n (z) has at least one zero in the right half-plane.
Moreover, as stated in [5, Theorem 5.1], all zeros of B(α)

n (z) lie in the annulus

A(n, α) :=
{
z ∈ C : 2

2n + α − 2/3
< |z| ≤ 2

n + α − 1

}
.

More precisely, they are in the left half-annulus in view of (ii). An improved upper
enclosure is given by [5, Theorem 3.1]: all zeros of B(α)

n (z) are confined in the car-
dioidal region

C(n, α) :=
{
z = reiθ ∈ C : 0 < r <

1 − cos θ

n + α − 1

}
∪

{ −2

n + α − 1

}
.

Moreover, from [5, Theorem 4.1], we have that all zeros of B(α)
n (z) with n ≥ 2 are in

the sector

S(n, α) :=
{
z = ρeiθ ∈ C : |θ | > arccos

( −α

2n + α − 2

)
, −π < θ ≤ π

}
.

Then, we define
R−

n,α := A(n, α) ∩ C(n, α) ∩ S(n, α),

which leads to the statement (iii). ��
Remark 2.1 It is also noteworthy of the following properties.

(a) If n �= m, no zero of B(α)
n (z) can be a zero of B(α)

m (z), see [9, Theorem 1(b′)].
(b) For any fixed α and for odd n, let Zn,α be the unique (negative) real zero of

B(α)
n (z). We find from [5, Theorem 4.1] the asymptotic behaviour

Zn,α ≈− 2

1.3254868n+ 1.00628995α−1.34983648+ O((2n+ α−2)−1)
, n � 1.

(2.10)
In particular, for the BP Bn(z), its unique real zero for odd n behaves like
Zn,2 = −νn−1 + O(n−2) with ν ≈ 1.50888 . . . .

2.2 Legendre polynomials

The Legendre polynomials, denoted by Pn(x), x ∈ I := (−1, 1), are defined by the
three-term recurrence relation (cf. [22, p.94]):

(n + 1)Pn+1(x) = (2n + 1)x Pn(x) − nPn−1(x), n ≥ 1,
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with P0(x) = 1 and P1(x) = x . They satisfy the orthogonality

∫ 1

−1
Pm(x)Pn(x)dx = γnδmn, γn = 2

2n + 1
. (2.11)

The derivatives of Pn(x) satisfy [22, p.95]:

P ′
n(x) =

n−1∑
k=0

k+n odd

(2k + 1)Pk(x),

P ′′
n (x) =

n−2∑
k=0

k+n even

(k + 1/2)(n(n + 1) − k(k + 1))Pk+1(x).

(2.12)

A very useful property is

(2n + 1)Pn(x) = P ′
n+1(x) − P ′

n−1(x), n ≥ 1. (2.13)

Moreover, we have the special values

Pn(±1) = (±1)n, P ′
n(±1) = 1

2
(±1)n−1n(n + 1). (2.14)

3 Eigenvalue analysis of Petrov-Galerkin methods for first-order IVPs

In this section, we develop an eigenvalue analysis of the LDPG spectral method for
the first-order IVP and then precisely characterise the eigenvalue distributions of the
collocation differentiation matrix at Legendre points in [24, 29] by reformulating it as
a Petrov-Galerkin form.

3.1 Legendre dual Petrov-Galerkin method

To fix the idea, we consider the model problem

u′(t) = σu(t), t ∈ I := (−1, 1); u(−1) = u0, (3.1)

for given constants σ �= 0 and u0 �= 0. It is a prototype problem for testing the stability
of various numerical schemes and a good example to involve both the derivative and
mass matrices.

We adopt the LDPG scheme (cf.[20, 23]) and define the dual approximation spaces

0PN := {φ ∈ PN : φ(−1) = 0}, 0
PN := {ψ ∈ PN : ψ(1) = 0}.
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We seek uN = u0 + vN ∈ PN with vN ∈ 0PN such that

(v′
N , ψ) − σ(vN , ψ) = σ(u0, ψ), ∀ψ ∈ 0

PN . (3.2)

Choose the basis functions for the trial function space 0PN as

φk(t) = k + 1√
2

(Pk(t) + Pk+1(t)), 0 ≤ k ≤ N − 1, (3.3)

and for the test function space 0
PN as

φ∗
j (t) = 1√

2( j + 1)
(Pj (t) − Pj+1(t)), 0 ≤ j ≤ N − 1. (3.4)

Write and denote

vN (t) =
N−1∑
k=0

ṽkφk(t), ṽ = (ṽ0, · · · , ṽN−1)
�.

The corresponding linear system of (3.2) reads

(
IN − σM

)
ṽ = √

2σu0e1, (3.5)

where IN is the N × N identity matrix and e1 is its first column. Note that with the
above choice, we can verify readily from (2.11)-(2.12) that (φ′

k, φ
∗
j ) = δ jk, and the

mass matrix M ∈ R
N×N is a tri-diagonal (but non-symmetric) matrix with nonzero

entries given by

M jk = (φk, φ
∗
j ) =

⎧⎪⎨
⎪⎩

j
( j+1)(2 j+1) , k = j − 1, 1 ≤ j ≤ N − 1,
1

2 j+1 − 1
2 j+3 , k = j, 0 ≤ j ≤ N − 1,

− j+2
( j+1)(2 j+3) , k = j + 1, 0 ≤ j ≤ N − 2.

(3.6)

Notably, the matrix −M is identical to the Jacobi matrix associated with the
three-term recurrence relation of B(3)

N (z), so we can characterise the eigenvalues and
eigenvectors of M as follows.

Theorem 3.1 Let {λ j := λN , j }Nj=1 be the eigenvalues of the tri-diagonal matrix M
with N ≥ 2 given in (3.6). Then, we have the following properties of the eigenvalues.

(i) The eigenvalues
{
λ j = −z(3)j

}N
j=1 with

{
z(3)j := z(3)N , j

}
being zeros of the gen-

eralised Bessel polynomial B(3)
N (z) defined in (2.3) with α = 3, β = 2, so the

eigenvalues are all simple and conjugate of each other. For odd N , its unique real
eigenvalue behaves like −ZN ,3 in (2.10).
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(ii) All the eigenvalues lie in the open right half-plane and are located in a crescent-
shaped region:

λ j ∈ R+
N ,3 :=

{
z = ρeiθ ∈ C : 1

N + 7/6
< ρ ≤ 1 + cos θ

N + 2
, |θ | < π − N ,3

}
,

(3.7)
for 1 ≤ j ≤ N , where N ,3 is given in (2.9) and the equal sign can be only
attainable at θ = 0.

The corresponding eigenvectors are

v j = b j

|b j | , b j := (
B(3)
0 (−λ j ), B

(3)
1 (−λ j ), · · · , B(3)

N−1(−λ j )
)�

, 1 ≤ j ≤ N .

(3.8)

Proof From the three-term recurrence relation (2.3) with α = 3, β = −2, we obtain

⎧⎪⎨
⎪⎩

−zB(3)
0 (z) = 2

3 B
(3)
0 (z) − 2

3 B
(3)
1 (z),

−zB(3)
j (z) = j

( j+1)(2 j+1) B
(3)
j−1(z) + 2

(2 j+1)(2 j+3) B
(3)
j (z)

− j+2
( j+1)(2 j+3) B

(3)
j+1(z), 1 ≤ j ≤ N − 1.

(3.9)

Then, we can rewrite (3.9) as the matrix form and find from (3.6) that

−zb(z) = Mb(z) − N + 1

N (2N + 1)
B(3)
N (z)eN , (3.10)

where

b(z) := (
B(3)
0 (z), B(3)

1 (z), · · · , B(3)
N−1(z)

)�
, eN := (0, · · · , 0, 1)� ∈ R

N .

Taking z = z(3)j = −λ j in (3.10), we derive immediately that λ jv j = Mv j for
1 ≤ j ≤ N . Then, the properties and distribution of the eigenvalues stated in (i)-(ii)
are direct consequences of Theorem 2.1 with α = 3. In view of Remark 2.1, the unique
real eigenvalue of M for odd order N has the asymptotic behaviour as in (2.10). ��

We depict in Fig. 2 (left) the distributions of the eigenvalues {λ j }Nj=1 of M with

N = 51, where we highlight the crescent-shaped region R+
N ,3 in (3.7), and also plot

the cardioid curve CN ,3 : ρ = 1+cos θ
N+2 for |θ | ≤ π. It is evident from (3.7) that

1

N + 7/6
< |λ j | = |λN , j | ≤ 2

N + 2
, 1 ≤ j ≤ N ,

so all {|λN , j |}Nj=1 behave like O(N−1). Indeed, we observe from Fig. 2 (middle)
that the “radii” of the “semi-circles” decay with respect to N . In Fig. 2 (right), we
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Fig. 2 Eigenvalues of M in (3.6). Left: Distribution of λ j = λN , j with N= 51 in the crescent-shaped
region. Middle: Distributions of the eigenvalues with various N. Right: Behaviour of the eigenvalues with
the smallest and largest magnitudes for 1 ≤ N ≤ 100

demonstrate the behaviour of the eigenvalues with the smallest and largest magnitudes
from which we speculate

min
j

|λ j | � Cmin

N
, max

j
|λ j | � Cmax

N
,

and Cmin → 1,Cmax → 1.5 for N � 1.
In the above derivations, we chose the basis functions in (3.3)–(3.4) with proper

coefficients so that the derivative matrix in the linear system (3.5) became an identity
matrix, but as a matter of fact, the eigenvalues are independent of the choice of basis
functions. More precisely, consider any two sets of bases:

0PN = span
{
ψk : 0 ≤ k ≤ N − 1

}
, 0

PN = span
{
ψ∗
k : 0 ≤ k ≤ N − 1

}
.

Let P, Q be the corresponding transformation matrices such that

ψk(t) =
N−1∑
j=0

P jkφ j (t), ψ∗
k (t) =

N−1∑
j=0

Qk jφ
∗
j (t).

Further, let Ŝ, M̂ be the related derivative and mass matrices, that is, Ŝ jk = (ψ ′
k, ψ

∗
j )

and M̂ jk = (ψk, ψ
∗
j ).

It can be shown by direct manipulations of the following results, so we leave its
proof to the interested readers.

Corollary 3.1 The eigenvalues {λ j := λN , j }Nj=1 of the matrix M in (3.6) are also the
eigenvalues of the generalised eigenvalue problem:

M̂ v̂ = λŜv̂,

where the corresponding eigenvectors are

v̂ j = P−1v j

|P−1v j |
, 1 ≤ j ≤ N ,
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with {v j }Nj=1 being the eigenvectors of M given in (3.8).

3.2 Collocation scheme at Legendre points

Trefethen and Trummer [29] studied the collocation scheme for hyperbolic problems
on the nodes consisting of N Legendre-Gauss points and an endpoint (to impose the
underlying one-sided boundary condition). In what follows, we employ this scheme to
the model problem (3.1) and show that it can be reformulated into a Petrov-Galerkin
scheme.We can then characterise the eigenvalues of the spectral differentiation matrix
through zeros of the BP.

Let t0 = −1 and t1 < t2 < · · · < tN be the Legendre-Gauss points, i.e., zeros
of PN (t), and let {h j }Nj=0 ⊆ PN be the corresponding Lagrange interpolating basis
polynomials such that h j (ti ) = δi j . The collocation scheme in [29] adapted to (3.1)
is to find uN ∈ PN such that

u′
N (t j ) = σuN (t j ), 1 ≤ j ≤ N ; uN (t0) = u0. (3.11)

Since 0PN = span{h j : 1 ≤ j ≤ N }, we write and denote

uN (t) =
N∑
j=0

uN (t j )h j (t), u = (uN (t1), · · · , uN (tN ))�.

Then, we obtain the linear system

(
D − σ IN

)
u = −u0h′

0, (3.12)

where h′
0 = (h′

0(t1), · · · , h′
0(tN ))�, and the spectral differentiation matrix D ∈

R
N×N with the entries Di j = h′

j (ti ) for 1 ≤ i, j ≤ N . One verifies readily that

h0(t) = (−1)N PN (t), h j (t) = 1 + t

1 + t j
l j (t), 1 ≤ j ≤ N ,

where {l j (t)}Nj=1 ⊆ PN−1 are the Lagrange interpolating basis polynomials at the

Legendre-Gauss points {t j }Nj=1. Thus, we can compute the entries of D via

Di j = h′
j (ti ) = 1

1 + t j
δi j + 1 + ti

1 + t j
l ′j (ti ), 1 ≤ i, j ≤ N , (3.13)

where {l ′j (ti )} can be computed by the formulas in [22, Ch.3].
To facilitate the eigenvalue analysis of D, we reformulate (3.11) as a pseudospectral

scheme. Let {ω j }Nj=1 be the Legendre-Gauss quadrature weights corresponding to
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{t j }Nj=1 and denote the induced discrete inner product by 〈·, ·〉LG. Then, we obtain
from (3.11) that

〈u′
N , ψ〉LG = σ 〈uN , ψ〉LG, uN (−1) = u0, ∀ψ ∈ PN−1. (3.14)

As the Legendre-Gauss quadrature rule has a degree of precision 2N − 1, the
scheme (3.14) is equivalent to the Petrov-Galerkin scheme: find uN = u0 + vN ∈ PN

with vN ∈ 0PN such that

(v′
N , ψ) − σ(vN , ψ) = σ(u0, ψ), ∀ψ ∈ PN−1. (3.15)

It is essential to choose the basis functions for 0PN as

φ0(t) = 1√
2
(t + 1), φk(t) = 1√

2
(Pk+1(t) − Pk−1(t)), 1 ≤ k ≤ N − 1, (3.16)

and choose {ψ j (t) = 1√
2
Pj (t)}N−1

j=0 as the basis polynomials for the test function

space. One verifies from (2.11) and (2.13)-(2.14) that (φ′
k, ψ j ) = δ jk and

M jk = (φk, ψ j ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, k = j = 0,

− 1
2 j+1 , k = j + 1,
1

2 j+1 , k = j − 1,

0, otherwise.

(3.17)

Then, the system corresponding to (3.15) reads

(
IN − σM

)
v̄ = √

2σu0e1, (3.18)

where

vN (t) =
N−1∑
k=0

v̄kφk(t), v̄ = (v̄0, · · · , v̄N−1)
�.

Lemma 3.1 The spectral differentiation matrix D in (3.12) is similar to the inverse
M−1, i.e.,

D = � M−1 �−1,

where � ∈ R
N×N has the entries {�ik = φk(ti )}0≤k≤N−1

1≤i≤N and the basis {φk} is given
in (3.16).

Proof We first show that
D� = �′, �′

ik = φ′
k(ti ). (3.19)
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For any p ∈ 0PN , we have the exact differentiation

p′(t) =
N∑
j=1

p(t j )h
′
j (t), so p′ = D p,

where p = (p(t1), · · · , p(tN ))� and p′ = (p′(t1), · · · , p′(tN ))�. Taking p to be
columns of � yields

�′ = (φ′
0, · · · ,φ′

N−1) = D(φ0, · · · ,φN−1) = D�.

We now introduce the matrix related to the dual basis functions: � ∈ R
N×N with

� jk = ψ j (tk)ωk . One verified readily from (3.14) that

(��) jk =
N−1∑
l=0

� jl�lk =
N−1∑
l=0

ψ j (tl)φk(tl)ωl = 〈φk, ψ j 〉LG = (φk, ψ j ) = M jk,

and
(��′) jk = 〈φ′

k, ψ j 〉LG = (φ′
k, ψ j ) = δ jk,

so we have
�� = M, ��′ = IN . (3.20)

Then, from (3.19)–(3.20), we obtain immediately that

D = �′ �−1 = �−1 �−1 = � M−1 �−1.

This ends the proof. ��
Remarkably, we can show that the eigenvalues of the matrix M are zeros of the

classical BP, which together with Lemma 3.1 allows us to characterise the distribution
of eigenvalues of D.

Theorem 3.2 Let {λ̄ j := λ̄N , j }Nj=1 be the eigenvalues of the matrix M with N ≥ 2.

(i) The eigenvalues {λ̄ j = −z j }Nj=1 with
{
z j := zN , j

}
being zeros of the Bessel

polynomial BN (x) defined in (2.7), so the eigenvalues are all simple and conjugate
of each other. For odd N , its unique real eigenvalue behaves like−ZN ,2 in (2.10).

(ii) All the eigenvalues are in the open right half-plane and located in a crescent-
shaped region:

λ̄ j ∈ R+
N :=

{
z = ρeiθ ∈ C : 1

N + 2/3
< ρ ≤ 1 + cos θ

N + 1
, |θ | < π − N ,2

}
,

for 1 ≤ j ≤ N, where N ,2 is given in (2.9) and the equal sign can be only
attainable at θ = 0.
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The corresponding eigenvectors are

v̄ j = b̄ j

|b̄ j |
, b̄ j = (

B0(−λ̄ j ), B1(−λ̄ j ), · · · , BN−1(−λ̄ j )
)�

, 1 ≤ j ≤ N . (3.21)

Proof We rewrite the three-term recurrence relation (2.3) as

{
−zB0(z) = B0(z) − B1(z),

−zB j (z) = 1
2 j+1 Bj−1(z) − 1

2 j+1 Bj+1(z), 1 ≤ j ≤ N − 1,
(3.22)

and denote

b̄(z) := (B0(z), B1(z), · · · , BN−1(z))
�, eN := (0, · · · , 0, 1)� ∈ R

N .

In view of (3.17), we can reformulate (3.22) as the matrix form

− z b̄(z) = Mb̄(z) − 1

2N − 1
B(2)
N (z)eN . (3.23)

Taking z = z j = −λ̄ j in (3.23), we obtain immediately that λ̄ jv j = Mv j for
1 ≤ j ≤ N with the corresponding eigenvectors {b̄ j := b̄(−λ̄ j )} given in (3.21).
With this, we claim these properties from Theorem 2.1 and Remark 2.1 with α = 2.��

In Fig. 3 (left), we plot the regionR+
N with N = 51 confined by the cardioid curve:

C+
N =

{
z = ρeiθ ∈ C : ρ = 1 + cos θ

N + 1
, −π < θ ≤ π

}
,

and the semi-circle: |z| = 1/(N + 2/3) with θ ∈ [−π/2, π/2]. Like Fig. 2, we also
illustrate the distributions of the eigenvalues for various N and examine the behaviour
of the eigenvalues with the smallest and largest magnitudes, from which we observe
similar asymptotic properties.

As a direct consequence of Lemma 3.1 and Theorem 3.2, we have the following
important result on the eigenvalues and eigenvectors of D.
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Fig. 3 Eigenvalues of M in (3.17). Left: Distribution of λ̄ j = λ̄N , j with N = 51 in the crescent-shaped
region. Middle: Distributions of the eigenvalues for different N . Right: Behaviour of the eigenvalues with
the smallest and largest magnitudes for 1 ≤ N ≤ 100
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Corollary 3.2 The eigenvalues {λD
j }Nj=1 of D in (3.12)-(3.13) are reciprocal of the

eigenvalues {λ̄ j }Nj=1 of M in (3.17)-(3.18), so they are distinct, and conjugate of each
other, except for one real eigenvalue when N is odd. Moreover, all the eigenvalues
satisfy �{λD

j } > 0 and lie in the region

R̂+
N :=

{
z = ρeiθ ∈ C : N + 1

1 + cos θ
≤ ρ < N + 2

3
, |θ | < π − N ,2

}
, 1 ≤ j ≤ N .

(3.24)
The corresponding eigenvector of λD

j is

vD
j = bDj

|bDj | , bDj = �b̄ j , 1 ≤ j ≤ N ,

where the matrix � is given in Lemma 3.1 and {b̄ j } is given by (3.21).

Remark 3.1 The Bessel polynomial directly bears on the modified Bessel function (cf.
[9]):

BN (z) =
√

2

π z
e1/z KN+ 1

2
(1/z),

which agrees with the identification in [30]. However, we can also identify the eigen-
vectors through our approach.

We illustrate in Fig. 4 the eigenvalues of D in the same setting as in Fig. 3. It is seen
from (3.24) that |λD

j | = O(N ). Indeed, by Remark 2.1, the unique real eigenvalue for
odd N behaves like

λD
(N+1)/2 = N

ν
+ O(1), ν ≈ 1.50888.
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Fig. 4 Eigenvalues of D in (3.12) with the same setting as Fig. 3. Here, Ĉ+
N denotes the left boundary curve

in (3.24)
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4 Eigenvalue analysis of LDPGmethods for second-order IVPs

In this section, we extend the eigenvalue analysis to the second-order IVP:

u′′(t) = σu(t), t ∈ I ; u(−1) = u0, u′(−1) = u1, (4.1)

where the constants σ �= 0, and u0, u1 are given. Introduce the dual approximation
spaces

VN ={
φ ∈ PN+1 : φ(−1)=φ′(−1)=0

}
, V ∗

N ={
ψ ∈ PN+1 : ψ(1)=ψ ′(1)=0

}
.

Here, we set the highest degree to be N + 1 so that dim(VN ) = dim(V ∗
N ) = N . Let

{ti , ωi }N+1
i=0 be the Legendre-Gauss-Lobatto quadrature nodes and weights with the

discrete inner product and the exactness of quadrature

〈 f , g〉LGL :=
N+1∑
i=0

f (ti )g(ti )ωi ; 〈 f , g〉LGL = ( f , g), ∀ f · g ∈ P2N+1. (4.2)

TheLegendre pseudospectral dual-Petrov-Galerkin scheme for (4.1) is to find uN =
u0 + (1 + t)u1 + vN ∈ PN+1 with vN ∈ VN such that

〈v′
N , ψ ′〉LGL + σ 〈vN , ψ〉LGL = −σ 〈u0 + (1 + t)u1, ψ〉LGL, ∀ψ ∈ V ∗

N . (4.3)

Choose the basis functions for VN and V ∗
N as

φk(t) = ck
(
Pk(t) + ak Pk+1(t) + bk Pk+2(t)

) ∈ VN ,

φ∗
k (t) = dk

(
Pk(t) − ak Pk+1(t) + bk Pk+2(t)

) ∈ V ∗
N ,

for 0 ≤ k ≤ N − 1, where

ak = 2k + 3

k + 2
, bk = k + 1

k + 2
, ck = k + 2√

2
, dk = 1√

2(k + 1)(2k + 3)
.

Write and denote

vN (t) =
N−1∑
k=0

ṽkφk(t), ṽ = (ṽ0, · · · , ṽN−1)
�.

The matrix form of (4.3) reads

(
IN − σM(2))ṽ = σ g, where g := 2u0 + u1

3
√
2

e1 + u1

15
√
2
e2. (4.4)
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Thanks to (4.2), we verify from the properties (2.11)-(2.12) readily that

〈φ′′
k , φ

∗
j 〉LGL = (φ′′

k , φ
∗
j ) = δ jk, 0 ≤ j, k ≤ N − 1,

and the mass matrix M(2) ∈ R
N×N is a penta-diagonal (non-symmetric) matrix with

nonzero entries given by

M(2)
jk =〈φk , φ

∗
j 〉LGL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2( j−1)
j(2 j+1)d j c j−2, k= j − 2, 2≤ j ≤N− 1,

4
( j+1)( j+2)d j c j−1, k= j − 1, 1≤ j ≤N− 1,(

2
2 j+1 − 2(2 j+3)

( j+2)2
+

(
j+1
j+2

)2
2

2 j+5

)
d j c j , k= j, 0≤ j ≤N− 2,

−N3−2N2+4N+2
N (N+1)2(2N−1)(2N+1)

, k= j =N− 1,

− 4
( j+2)( j+3)d j c j+1, k= j+ 1, 0≤ j≤N− 2,
2( j+1)

( j+2)(2 j+5)d j c j+2, k= j+ 2, 0≤ j≤N− 3.
(4.5)

Note that for j = k = N − 1, the LGL quadrature is not exact, so we obtain this
entry via

〈φN−1, φ
∗
N−1〉LGL = cN−1dN−1

{‖PN−1‖2−a2N−1‖PN‖2 + b2N−1〈PN+1, PN+1〉LGL
}

= N + 1

N (2N − 1)(2N + 1)
− 1

N (N + 1)

+ N

2(N + 1)(2N + 1)
〈PN+1, PN+1〉LGL

= −N 3 − 2N 2 + 4N + 2

N (N + 1)2(2N − 1)(2N + 1)
, (4.6)

where we used the property (see [22, p.101]):

〈PN+1, PN+1〉LGL = 2

N + 1
.

Remarkably, we can exactly characterise the eigenvalues of M(2) as follows.

Theorem 4.1 There holds the relation

M(2) = M̃ × M̃, (4.7)

where M̃ is the Jacobi matrix of the three-term recurrence relation of the GBPs
{B(4)

n (z)}, i.e., (2.3) with α = 4, β = 2. Consequently, the eigenvalues of M(2) are

μ j = (
z(4)j

)2
, 1 ≤ j ≤ N ,
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where {z(4)j } are zeros of the GBP B(4)
N (z). They are simple, conjugate of each other,

and lie in the region

μ j ∈R(2)
N ,4 :=

{
z=ρeiθ ∈C : 1

(N+ 5
3 )

2
< ρ ≤

(1+cos(θ/2)

N + 3

)2
, |θ |≤2(π−N ,4)

}
,

(4.8)
for 1 ≤ j ≤ N , where N ,4 is given in (2.9) and the equal sign can be only attained
at θ = 0. Furthermore, the corresponding eigenvectors are

ṽ j = b̃ j

|b̃ j |
, b̃ j := (

B(4)
0 (z(4)j ), B(4)

1 (z(4)j ), · · · , B(4)
N−1(z

(4)
j )

)�
, 1 ≤ j ≤ N . (4.9)

Proof Wewrite the recurrence relation (2.3) with α = 4, β = 2 and j = 0, · · · , N−2
as the matrix form

− z b̃(z) = M̃ b̃(z) − N + 2

(N + 1)(2N + 1)
B(4)
N (z)eN , (4.10)

where b̃(z) = (
B(4)
0 (z), B(4)

1 (z), · · · , B(4)
N−1(z)

)� and M̃ is the tri-diagonal Jacobi
matrix with nonzero entries given by

M̃ jk =

⎧⎪⎨
⎪⎩

j
( j+1)(2 j+3) , k = j − 1, 1 ≤ j ≤ N − 1,
1
j+1 − 1

j+2 , k = j, 0 ≤ j ≤ N − 1,

− j+3
( j+2)(2 j+3) , k = j + 1, 0 ≤ j ≤ N − 2.

(4.11)

We conclude from (4.10) that the eigenvalues of M̃ are N zeros of B(4)
N (z) with the

corresponding unit eigenvectors given by (4.9).
Notably, we can directly verify from (4.5) and (4.11) that M(2) = M̃ × M̃. In view

of Theorem 2.1 with α = 4, we complete the proof. ��
In Fig. 5 (left), we depict the distribution of eigenvalues of M(2) and the region

R(2)
N ,4 given in (4.8) with N = 51. Apparently, they are all distributed within the

shaded region as shown in Theorem 4.1. We also plot the eigenvalues for various N
and illustrate behaviours of the maximum and the minimum magnitudes in the other
two sub-figures in Fig. 5. As predicted by Theorem 4.1, we have |μ j | = O(N−2).

It is seen from the above discussions that with the appropriate choice of basis
functions, we were able to associate the mass matrix of the pseudospectral scheme
(4.3) with the GBP through (4.7). However, for the spectral Petrov-Galerkin scheme,
the eigenvalues in magnitude appear as an O(N−3) perturbation of those for the
pseudospectral ones. To demonstrate this, we replace the discrete inner product in
(4.3) by the continuous inner product, leading to the spectral dual-Petrov-Galerkin
scheme for (4.1): find uN = u0 + (1 + t)u1 + vN ∈ PN+1 with vN ∈ VN such that

(v′
N , ψ ′) + σ(vN , ψ) = −σ(u0 + (1 + t)u1, ψ), ∀ψ ∈ V ∗

N . (4.12)
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Fig. 5 Eigenvalues of M(2) in (4.5) with the same setting as Fig. 3

The only difference is to modify the last entry of M(2) in the linear system (4.4),
i.e., (4.6) by

(φN−1, φ
∗
N−1) = − 2(N 2 + N − 3)

N (N + 1)(2N − 1)(2N + 3)
= 〈φN−1, φ

∗
N−1〉LGL + O(N−2).

Numerically, we find from Fig. 6 that the eigenvalues {μ̃ j } of the modified matrix are
a O(N−3) perturbation of the eigenvalues {μ j } of M(2).

5 Eigenvalue analysis of LDPGmethods for higher-order IVPs

In this section, we extend the eigenvalue analysis to higher-order IVPs with a focus on
the third-order IVPs. We also consider the reformulation of the higher-order IVPs as a
systemof first-order equations forwhichwe can precisely characterise the eigenvalues.
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Fig. 6 Eigenvalues of M(2) in the pseudospectral scheme (4.3) and the spectral scheme (4.12). Left:
Distributions with N = 54. Right: Asymptotic order O(N−3)
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5.1 Third-order IVPs

To fix the idea, we consider the third-order IVP:

u′′′(t) = σu(t), t ∈ I ; u(−1) = u0, u′(−1) = u1, u′′(−1) = u2, (5.1)

where σ �= 0, u0, u1 and u2 are given constants.
Define the dual approximation spaces

VN = {φ ∈ PN+2 : φ(−1) = φ′(−1) = φ′′(−1) = 0},
V ∗
N = {φ ∈ PN+2 : φ(1) = φ′(1) = φ′′(1) = 0},

with dim(VN ) = dim(V ∗
N ) = N . Then, the LDPG scheme for (5.1) is

{
Find uN = u0 + (1 + t)u1 + 1

2 (1 + t)2u2 + vN ∈ PN+2 with vN ∈ VN s.t.

(v′
N , ψ ′′) − σ(vN , ψ) = σ(u0 + u1(1 + t) + u2

2 (1 + t)2, ψ), ∀ψ ∈ V ∗
N .

(5.2)
Choose the basis functions

φk(t) = dk
(
Pk(t) + ak Pk+1(t) + bk Pk+2(t) + ck Pk+3(t)

) ∈ VN ,

φ∗
k (t) = ek

(
Pk(t) − ak Pk+1(t) + bk Pk+2(t) − ck Pk+3(t)

) ∈ V ∗
N ,

for 0 ≤ k ≤ N − 1, where

ak = 3(2k + 3)

2k + 5
, bk = 3(k + 1)

k + 3
, ck = (k + 1)(2k + 3)

(k + 3)(2k + 5)
,

dk = (k + 2)(k + 3)

2(2k + 3)
, ek = 1

(k + 1)(k + 2)(2k + 3)
.

Then, we can write and denote

vN (t) =
N−1∑
k=0

ṽkφk(t), ṽ = (ṽ0, · · · , ṽN−1)
�.

Substituting vN into (5.2) and taking ψ = φ∗
j for 0 ≤ j ≤ N − 1 lead to

(IN − σM(3))ṽ = σ g, (5.3)

where the elements of the column-N vector g are given by

g j = (u0 + u1(1 + t) + u2
2

(1 + t)2, φ∗
j ), 0 ≤ j ≤ N − 1.
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Using the properties of Legendre polynomials, we find that the nonzero entries of the
seven-diagonal (non-symmetric) matrix M(3) are given by

M(3)
jk = (φk, φ

∗
j ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e j d j−3c j−3γ j , k= j− 3,

e j d j−2
(
b j−2γ j − c j−2a jγ j+1

)
, k= j− 2,

e j d j−1
(
a j−1γ j − b j−1a jγ j+1 + c j−1b jγ j+2

)
k= j− 1,

e j d j
(
γ j − a2jγ j+1 + b2jγ j+2− c2jγ j+3

)
, k= j,

e j d j+1
( − a jγ j+1 + a j+1b jγ j+2 − b j+1c jγ j+3

)
, k= j+ 1,

e j d j+2
(
b jγ j+2 − a j+2c jγ j+3

)
, k= j+2,

−e j d j+3c jγ j+3, k= j+3,

where γ j = 2/(2 j +1) as in (2.11), and the matrix of the third derivative is an identity
matrix as

(φ′′′
k , φ∗

j ) = −(φ′′
k , (φ∗

j )
′) = (φ′

k, (φ
∗
j )

′′) = δ jk .

We can directly verify the following properties and omit the details.

Proposition 5.1 The matrix M(3) is only different from (M̆)3 in three entries:

( j, k) = (N − 2, N − 1), (N − 1, N − 2), (N − 1, N − 1), (5.4)

where M̆ is the tri-diagonal Jacobi matrix of the three-term recurrence relation for
the GBPs {B(5)

n (z)} with nonzero entries given by

M̆ jk =

⎧⎪⎨
⎪⎩

j
( j+2)(2 j+3) , k = j − 1, 1 ≤ j ≤ N − 1,

6
(2 j+3)(2 j+5) , k = j, 0 ≤ j ≤ N − 1,

− j+4
( j+2)(2 j+5) , k = j + 1, 0 ≤ j ≤ N − 2.

Moreover, for these ( j, k) in (5.4),

|M(3)
jk − (

M̆
3)

jk | = O(N−3).

Note that in Theorem 4.1, the matrix of the pseudospectral scheme (4.3) corre-
sponds exactly to the Jacobi matrix of the GBPs {B(4)

n (z)}. However, in the third-order
case, it seems not possible to construct a pseudospectral scheme built upon a suitable
quadrature rule so that M(3) = (M̆)3. The numerical evidence in Fig. 7 indicates

max
j

∣∣λM(3)

j − (−z(5)j )3
∣∣ = O(N−4), (5.5)

where {z(5)j }Nj=1 are zeros of the GBP: B
(5)
N (z).
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Fig. 7 Left: Distributions of the eigenvalues of M(3) and the cubic power of the Jacobi matrix of the GBPs

{B(5)
n } with N = 54. Right: Numerical verification of (5.5)

5.2 Generalmth-order IVPs

In general, we consider the mth-order IVP:

u(m)(t) = σu(t), t ∈ I ; u(l)(−1) = ul , l = 0, · · · ,m − 1, (5.6)

where σ �= 0 and {ul} are given constants. Interestingly, we observe from the previous
analysis of the LDPG method for (5.6) with m = 1, 2, 3 the following pattern:

(i) As shown in Theorem 3.1 for the first-order IVP, the eigenvalues of the mass
matrix can be exactly characterised by zeros of the GBP: B(3)

N (z).
(ii) For the second-order IVP, the eigen-pairs of the matrix for the pseudospectral

scheme (4.3) can be exactly characterised by (square of) zeros of theGBP: B(4)
N (z)

(see Theorem 4.1). However, the corresponding matrix of the spectral scheme
differs from that of the pseudospectral version in the last entry (i.e., j = k =
N − 1), which leads to a perturbation in the eigenvalues of order O(N−3) (from
numerical evidences).

(iii) For the third-order IVP, the mass matrix of the spectral dual-Petrov-Galerkin
scheme differs from the cube of the Jacobi matrix corresponding to the GBPs:
B(5)
j (z) in the last three entries, where the perturbation is of order O(N−3) (see

Proposition 5.1). However, a dual pseudospectral version with the exact corre-
spondence to zeros of B(5)

N (z) might not exist.

For the general mth-order IVP (5.6), it is natural to speculate that the eigenvalues
of the mass matrix is associated with the GBP: B(m+2)

N (z). More specifically, define
the dual approximation spaces

VN = {
φ ∈ PN+m−1 : φ(l)(−1) = 0, l = 0, · · · ,m − 1

}
,

V ∗
N = {

ψ ∈ PN+m−1 : ψ(l)(1) = 0, l = 0, · · · ,m − 1
}
,
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with dim(VN ) = dim(V ∗
N ) = N . Then, as in the previous cases, we choose suit-

able compact combinations of Legendre polynomials as basis functions denoted by
{φk, φ

∗
k }N−1

k=0 , respectively, such that (φ
(m)
k , φ∗

j ) = δ jk . Denote the N -by-N mass

matrix by M(m) with entries M(m)
jk = (φk, φ

∗
j ). We conjecture that for m < N , the

matrix M(m) differs from (M̆)m in 2m − 3 entries, where M̆ is the tri-diagonal Jacobi
matrix corresponding to the GBPs: B(m+2)

j (z). Moreover, we speculate that

‖M(m) − (M̆)m‖∞ = O(N−m), max
1≤ j≤N

∣∣λM(m)

j − (− z(m+2)
j

)m∣∣ = O(N−(m+1)),

where {z(m+2)
j } are zeros of B(m+2)

N (z).

5.3 LDPGmethod formth-order IVP based on first-order system

Remarkably, we can show that if we rewrite the underlying IVP as a system of first-
order equations, then we are able to exactly characterise the eigenvalues through zeros
of the GBP: B(3)

N (z).
To fix the idea, we still consider the third-order IVP (5.1) and reformulate it as the

system

{
v′
0(t) = v1(t), v′

1(t) = v2(t), v′
2(t) = σv0(t), t ∈ I = (−1, 1),

v0(−1) = u0, v1(−1) = u1, v2(−1) = u2,

where we introduced the unknowns: vi = u(i) for i = 0, 1, 2. For each first-order
equation, we apply the Legendre dual-Petrov-Galerkin scheme (3.2): find vi,N =
ui + wi,N ∈ PN with wi,N ∈ 0PN such that for all ψ ∈ 0

PN ,

⎧⎪⎨
⎪⎩

(w′
0,N , ψ) − (w1,N , ψ) = (u1, ψ),

(w′
1,N , ψ) − (w2,N , ψ) = (u2, ψ),

(w′
2,N , ψ) − σ(w0,N , ψ) = σ(u0, ψ).

(5.7)

Choosing the basis functions for 0PN and 0PN as in (3.3)-(3.4), wewrite and denote

wi,N =
N−1∑
k=0

ŵi,kφk(t), ŵi = (ŵi,0, · · · , ŵi,N−1)
�, i = 1, 2, 3.

Taking ψ = φ∗
j in (5.7), we immediately obtain the corresponding linear systems:

ŵ0 − Mŵ1 = ĝ1, ŵ1 − Mŵ2 = ĝ2, ŵ2 − σMŵ0 = σ ĝ0, (5.8)
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where the tri-diagnal matrix M is given in (3.6) and the column-N vectors ĝi have
the entries ĝi, j = (ui , φ∗

j ) for 0 ≤ j ≤ N − 1 and i = 0, 1, 2. We eliminate ŵ1 and
ŵ2 from (5.8), leading to

(
IN − σM3)ŵ0 = σM2 ĝ0 + Mĝ2 + ĝ1. (5.9)

In practice, we directly solve (5.9) and then obtain the numerical solution of the
IVP (5.1) by

u(t) ≈ uN (t) := u0 + w0,N (t) = u0 +
N−1∑
k=0

ŵ0,kφk(t). (5.10)

Remark 5.1 This approach should be in contrast to the (direct) LDPG scheme (5.2)-
(5.3). In fact, the scheme (5.9)-(5.10) is easier to implement and extend to higher-order
IVPs, as it only involves thematrix of the first-order IVP.However the initial conditions
of derivatives are not exactly imposed, while the solution of the scheme (5.2) exactly
meets all initial conditions.

As a direct consequence of Theorem 3.1, we have the following exact characteri-
sation.

Corollary 5.1 The eigenvalues of M3 are {λ3N , j }Nj=1, where {λN , j }Nj=1 are the eigen-
values of the tri-diagonal matrix M with N ≥ 2 as in Theorem 3.1. The corresponding
eigenvectors are given by (3.8).

It is straightforward to extend the above approach to the general mth-order IVP
(5.6). Following the same lines as for the third-order case, we look for the numerical
solution (5.10) that satisfies

(
IN − σMm)

ŵ0 = σMm−1 ĝ0 +
m−1∑
l=1

Ml−1 ĝl ,

where the vectors ĝl are defined similarly with the entries ĝl, j = (ul , φ∗
j ) for 0 ≤ j ≤

N − 1 and l = 0, 1, · · · ,m − 1. Then, the eigenvalue distributions in Corollary 5.1
for m = 3 can be directly extended to general m ≥ 4. We omit the details.

6 Computing zeros of GBPs

In previous sections, we have shown that the eigenvalue distributions could be pre-
cisely characterised or approximately described by zeros of GBPs. Thus, accurate
computation of zeros of GBPs becomes crucial as a naive evaluation of the eigen-
values of the aforementioned non-symmetric, even tri-diagonal, matrices with double
precision may suffer from severe instability even for small N .
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Observe from (2.2) that for β �= 0, we can obtain zeros of B(α,β)
n (z) from those

of B(α)
n (z) (i.e., β = 2) through a simple scaling. Here, we restrict our attention to

B(α)
n (z) with the parameter α satisfying the conditions in Theorem 2.1. We denote its

n distinct zeros by {z(α)
j }nj=1, which are conjugate pairs, so it suffices to compute half

of them.

6.1 Algorithm in Pasquini [17, 18]

The algorithm introduced by Pasquini [17, 18] computes zeros of polynomials that
satisfy a class of second-order differential equations, like (2.1) for the GBPs. The basic
idea is to convert the polynomial root-finding problem into solving a suitable system
of nonlinear equations so that their zeros are identical. Such a reformulation appears
fairly effective for the GBPs as the three-term recurrence (2.3) is sensitive to the range
of z in the complex plane and the normalisation. Here, we outline the algorithm in
[18] below.

Introduce the complex coordinates z = (z1, · · · , zn) ∈ C
n and define the nonlinear

vector-valued function

F(z) := (F1(z), · · · , Fn(z))�, z ∈ A
n ⊂ C

n,

where the nonlinear complex-valued functions and admissible set are respectively
given by

Fi (z) := α

2zi
+ 1

z2i
+

n∑
j=1, j �=i

1

zi − z j
, 1 ≤ i ≤ n,

A
n := {

z ∈ C
n : zi �= z j , if i �= j; and zi �= 0, i, j = 1, · · · , n

}
.

According to Pasquini [18, Theorem 4.1], the vector z(α)∗ = (z(α)
1 , · · · , z(α)

n )�

contains n zeros of B(α)
n (z) if and only if F(z(α)∗ ) = 0. Moreover, the Jacobian matrix

of F is nonsingular at z = z(α)∗ . Then, a suitable iterative solver, e.g., Newton’smethod,
can be employed to solve the nonlinear system. In practice, one can choose the initial
guess within the region given in (2.8).

6.2 Algorithm in Segura [19]

Segura [19] proposed accurate algorithms for computing complex zeros of solutions
of second-order linear ODEs: w′′(z) + A(z)w(z) = 0 with A(z) meromorphic, based
on a qualitative study of the solution structures. Through suitable substitutions and
connections with Laguerre functions, the ODE of the GBPs can be transformed into
this form. TheMapleworksheets in symbolic computation are available on the author’s
website.
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Fig. 8 Errors between the eigenvalues computed by two algorithms (with double precision) and reference
values (with multiple precision) for α = 2 (left) and α = 4 (right)

6.3 Numerical tests

We implement the above algorithms inMatlab (with double-precision computation),
but generate the reference zeros (i.e., the eigenvalues of the Jacobi matrix for the three-
term recurrence relation of the GBPs) using the Multiprecision Computing Toolbox1

with a sufficiently large number of digits. Here, we denote the reference zeros by {zmpj }
and name the above two algorithms in order as Method 1 and Method 2, respectively.

In Fig. 8, we depict the relative errors between the eigenvalues computed by the
two methods and the reference values for different α. We observe that both Pasquini’s
algorithm and Segura’s algorithm are stable with large N , and the former performs
slightly better than the latter.

7 Space-time discretisationmethods

The findings from previous eigenvalue analyses have deep implications in spectral
methods in time. In this section, we first present a general framework for the space-
timediscretisationwithLDPG timediscretisation to evolutionaryPDEswith a focus on
two techniques: (i) matrix diagonalisation and (ii) QZ decomposition (or generalised
Schur decomposition) to effectively deal with the resulted matrices. We then apply
the space-time methods to some interesting linear and nonlinear wave problems that
require high accuracy in both space and time.

7.1 A general framework

To fix the idea, we consider a system of linear ODEs:

u′(t) = Au(t) + f (t), t ∈ (−1, 1); u(−1) = u0, (7.1)

where u, f , u0 ∈ R
Nx and A ∈ R

Nx×Nx (which might be resulted from spatial
discretisations).

1 Multiprecision Computing Toolbox: https://www.advanpix.com/
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Using the LDPG scheme described in Sect. 3.1 to (7.1), we seek the LDPG spectral
approximation in terms of the basis (3.3),

u(t) ≈ u∗(t) = u0 +
Nt−1∑
k=0

ûkφk(t),

and denote the matrix of unknowns by Û = (û0, · · · , ûNt−1)
� ∈ R

Nt×Nx . Then, the
corresponding linear system reads

Û − M t Û A� = F, (7.2)

where M t ∈ R
Nt×Nt is the same as in (3.5) and

F = U0A� + ( f̂ 0, · · · , f̂ Nt−1)
� ∈ R

Nt×Nx , U0 = √
2e1u�

0 , f̂ j = ( f , φ∗
j ),

with the basis functions {φ∗
j } given in (3.4).

The linear system (7.2) in a moderate scale can be solved directly by rewriting
it in the Kronecker product form, but it is costly in particular for multiple spatial
dimensions in space, as the time discretisation is globally implicit. In the following,
we introduce two techniques to alleviate this burden.

7.1.1 Matrix diagonalisation

Let
E = (v1, · · · , vNt ), � = diag(λ1, · · · , λNt ), so M t E = E�,

where {λ j , v j }Nt
j=1 are eigen-pairs of M t given in Theorem 3.1. Introducing the sub-

stitution Û = EW , we obtain from (7.2) that

W − �WA� = E−1F =: G, (7.3)

which can be decoupled and solved in parallel

(
INx − λ j A

)
w j = g j , 1 ≤ j ≤ Nt , (7.4)

where w j , g j are the j th column of W�, G�, respectively.

Remark 7.1 Different from a normal matrix, we see from (7.3) that the diagonalisation
of a non-normalmatrix involves the inverse of the eigenvectormatrix E. In practice, we
can evaluateG by solving the linear system EG = F via a suitable iterative solver. It is
known that the stability and round-off errors essentially rely on the conditioning of E.
Unfortunately, this eigenvector matrix is extremely ill-conditioned with an exponential
growth condition number (see Fig. 9 below). As a result, this technique needs to be
implemented in a multi-domain (i.e., spectral-element in time) manner with relatively
small Nt on each sub-domain.
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7.1.2 QZ (or generalised Schur) decomposition

Recall that given square matrices A and B, the QZ decomposition factorises both
matrices as QAZ = S and QBZ = T , where Q and Z are unitary (i.e., Q−1 =
QH, Z−1 = ZH,where QH stands for the conjugate transpose or Hermitian transpose
of Q), and S and T are upper triangular.

We now apply the QZ decomposition to A = INt and B = M t and obtain

QZ = S, QMt Z = T . (7.5)

Introducing Û = ZW , and multiplying both sides of (7.2) by Q, we obtain from
(7.5) that

SW − TW A� = QF =: G. (7.6)

As S, T are upper triangular matrices, direct backward substitution reduces (7.6) to

w j
(
S j j INx − Tj j A�) = g j − r j , j = Nt , Nt − 1, · · · , 1, (7.7)

where w j , g j are the j th row of W , G, and

rNt = 0, r j =
Nt∑

k= j+1

wk
(
S jk INx − Tjk A�)

, j = Nt − 1, · · · , 1.

Here, S jk, Tjk with j ≤ k are the entries of S, T , respectively.

Remark 7.2 The QZ decomposition is stable for large Nt , and different from (7.3),
the step (7.6) does not involve any matrix inversion. Moreover, this technique can be
assembled into a multi-domain approach and march sequentially in time. However, as
{r j } involves wk with k > j, the linear systems (7.7) can only be solved sequentially.

7.2 Space-time spectral methods for linear and nonlinear wave propagations

7.2.1 A linear wave-type equation

As the first example of applications, we consider the linear wave-type equation

{
∂2xt u(x, t) + σu(x, t) = 0, x ∈ � := (xL , xR), t ∈ (0, T ],
u(x, 0) = u0(x), x ∈ �; u(xL , t) = 0, t ∈ [0, T ], (7.8)

for a given constant σ > 0. It is of hyperbolic type since under the transformation, we
have

∂2xt u(x, t) = ∂2ξ v(ξ, η) − ∂2ηv(ξ, η), u(x, t) := v(x + t, x − t).

As shown in [31], it is related to the linear Kadomtsev-Petviashvili (KP) model, and
the wave propagates along one side if the initial data is compactly supported. More
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precisely, if σ > 0 and the initial value u0(x) is compactly supported in (x0,∞), then
u(x, t) = 0 for all x < x0 and t ≥ 0. Thus, we can impose the left-sided boundary
condition in (7.8) and then simulate the waves in a finite domain. We transform (7.8)
in � × (0, T ) to the reference square � := (−1, 1)2 by simple linear transformations
that lead to the same equation but with σ̂ = 4σ/((xR − xL)T ) in place of σ.

Applying the LDPG method in Section 3.1 for spatial discretisation, we can obtain
the system (7.1) of the form

u′(t) + σ̂Mxu(t) = 0, t ∈ (−1, 1); u(−1) = u0, (7.9)

where Mx ∈ R
Nx×Nx is given in (3.5). Then, the general setup detailed in Section 7.1

directly carries over to (7.9). We now test the proposed LDPG space-time spectral
method and choose

u0(x) = sech2
(√

3(x + 35)/6
) − sech2(5

√
3/2), x ∈ � = (−50, 50). (7.10)

Fig. 9 Convergence of space-time spectral methods and conditioning of the eigenvector matrix (in (b)). (a)
Diagonalisation technique; (c)QZdecompositionwith amulti-domain implementation: L = 10 subintervals
of t ∈ [0, 40] with various Nt ∈ [5, 20] and Nx = 400. (d) Single domain space-time spectral method with
various N= Nt = Nx
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Fig. 10 Numerical solutions uN (x, t) obtained by (7.8) given the initial profile (7.10) withNx = Nt = 400
and different values of the parameter σ . (a) Numerical solution with σ = 1. (b) and (c) Profiles of the
numerical solution at fixed t or x but with different σ

We first check the accuracy of the solvers with the reference solution (denoted by
uref ) obtained from the scheme with sufficiently large Nt = Nx = 400 and up to T =
40 in time.As the diagonalisation techniqueworks for small Nt , (continuous) spectral-
elementmethod in time shall be utilised in our simulation.Wepartition the time interval
[0, T ] equally into L sub-intervals (but with the same Nt on each subinterval). Now,
we vary Nt from 5 to 20 and fix L = 10 and Nx = 400. We plot in Fig. 9a (resp.
Fig. 9c) the discrete L∞- and L2-errors for the spectral solver with diagonalisation
(resp. QZ decomposition) in the semi-log scale. We observe from Fig. 9a that the
errors of the diagonalisation technique for Nt up to 15 decay exponentially, but grow
exponentially for 16 ≤ Nt ≤ 20. Surprisingly, the growth rate agrees well with that
of the condition number of the eigenvector matrix E, illustrated in Fig. 9b. However,
the QZ decomposition in the same setting is stable and accurate for all samples of
Nt , as shown in Fig. 9c. We also depict in Fig. 9d the errors of the QZ decomposition
with a single domain in t and N= Nt = Nx for various N, from which we observe an
exponential convergence rate.

We now use the space-time spectral solver with QZ decomposition in time to sim-
ulate the wave propagations. In the computation, we take Nt = Nx = 400. Observe
from Fig. 10a that the initial input (7.10) immediately disperses and spreads in both
space and time that leads to oscillations and the waves decay in space at certain alge-
braic rate (refer to [31] for detailed analysis).

It is important to point out that the coefficient matrices of linear systems (7.4) and
(7.7) in space are well-conditioned. In Table 1, we tabulate the condition numbers and
eigenvalues with the minimum and maximum moduli of the matrix A := INx + Mx .

Table 1 Conditioning and eigenvalues of A = INx + Mx

Nx 20 30 40 50 100 200

Cond(A) 1.8730 1.8730 1.8730 1.8730 1.8730 1.8730

min j |λA
j | 1.0143 1.0071 1.0043 1.0029 1.0009 1.0003

max j |λA
j | 1.0708 1.0513 1.0539 1.0533 1.0513 1.0514
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Fig. 11 Left: numerical solution uN (x, t) (with Nx = 250, Nt = 80) of the KdV equation (i.e., (7.11) with
α = ε = 1 and σ = 0) for given initial input in (7.12). Right: Errors against Nx = 50 : 10 : 250 and fixed
Nt = 80 in semi-log scale

7.2.2 A nonlinear KdV-type equation

As a second example, we apply the space-time LDPG method to the KdV-type equa-
tion:

⎧⎪⎨
⎪⎩

∂tU + αU∂xU + ε2∂3xU + σ∂−1
x U = 0, x ∈ � := (xL , xR), t ∈ (0, T ]

U (xL , t) = U (xR, t) = ∂xU (xR, t) = 0, t ∈ [0, T ],
U (x, 0) = U0(x), x ∈ �̄,

(7.11)
where α ≥ 0, ε > 0, and σ �= 0 are constants, and

∂−1
x U (x, t) = 1

2

( ∫ x

xL
U (y, t)dy −

∫ xR

x
U (y, t)dy

)
.

Fig. 12 Numerical solutions with Nx = 250, Nt = 80 and the initial input U0(x) given in (7.12). a Linear
KdV equation (i.e., (7.11) with ε = 1 and α = σ = 0). b Linear KdV-type equation with a nonlocal term
(i.e., (7.11) with α = 0, ε = 1 and σ = 0.1)
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Fig. 13 Illustration of the effects of coefficients on numerical solutions with Nx = 150, Nt = 50 and the
initial input U0(x) given in (7.12)

It also relates to the reduced KP equations [31]. Like before, we covert (7.11) to the
reference square (−1, 1)2, and then follow Shen [20] to formulate the LDPG in space
involving the pair of dual spaces

VNx := {
φ ∈ PNx+2 : φ(−1) = φ(1) = φ′(1) = 0

}
,

V
∗
Nx

:= {
ψ ∈ PNx+2 : ψ(−1) = ψ(1) = ψ ′(−1) = 0

}
.

We omit the details on the expressions of the basis functions and formulation of the
matrix form. In the numerical tests, we use Newton’s iteration to solve the resulting
nonlinear system when α �= 0. Consider (7.11) with the initial condition given by

U0(x) = sech2
(√

3(x + 5)/6
)
, x ∈ � = (−50, 50), (7.12)

taken from the soliton solution of the KdV equation (i.e., (7.11) with α = ε = 1 and
σ = 0):

U (x, t) = sech2
(√

3(x − t/3 + 5)/6
)
.

We first show the accuracy by solving the KdV equation in the domain�× (0, 20).
In Fig. 11, we plot the numerical solution and the discrete L∞- and L2-errors with
Nt = 80 and various Nx = 50 : 10 : 200, which shows a spectral accuracy.

Using the accurate space-time spectral solver,we can simulate thewave propagation
for the linear KdV equation and (7.11) with a nonlocal term under the same setting.
We plot the numerical solutions in Fig. 12 and find that for the linear KdV equation,
the initial wave spreads out only on the left side of the soliton wave of the nonlinear
KdV equation (see Fig. 11a), with some wiggles on the same side. However, when
there is a nonlocal integral term, the initial wave immediately propagates chaotically
without a clear pattern (see Fig. 11b).
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For the KdV-type equation with a nonlocal term, we illustrate in Fig. 13 the effect
of the parameters on the propagation of the wave with the initial input (7.12). Unlike
the soliton wave, we see from Fig. 13a that, with a small nonlocal perturbation term,
the initial wave spread out on both sides of the soliton wave of the nonlinear KdV
equation. This indicates the nonlocal term significantly changes the properties of the
nonlinear KdV equation. While when we set the parameter ε such that α � ε2, the
nonlinear term now is dominant which needs a high-accuracy numerical method in
simulation to characterise the physical behaviour. From Fig. 13b, we see that the initial
wave appears a steep wave in finite time along with small amplitude oscillations near
boundaries.

8 Concluding remarks

In this paper, we showed that the eigen-pairs of spectral discretisation matrices result-
ing from the LDPG methods for prototype mth-order IVPs are associated with the
GBPs. More precisely, we were able to exactly characterise the eigenvalues and eigen-
vectors form = 1, 2, and approximately characterise the eigenvalues and eigenvectors
for m = 3. We also showed that by reformulating of the mth-order (m > 3) IVP as
a first-order system, the eigenvalues and eigenvectors of the matrix can be exactly
characterised by zeros of the GBP: B(3)

N (z).
As a by-product, we identified the eigen-pairs of the spectral-collocation differen-

tiation matrix at the Legendre points by reformulating the collocation scheme into a
Petrov-Galerkin formulation and provided answers to someopen questions in literature
related to this special collocation method.

The findings in this paper have direct implications on the CFL conditions of explicit
time-stepping schemeswith spectral discretizations in space and on the development of
LDPG spectral methods in time. As an application, we proposed a general framework
to construct space-time methods for a class of time-dependent PDEs and presented
two alternatives, matrix diagonalisation which is fully parallel but is limited to a
small number of unknowns in time due to the ill-conditioning and QZ decomposition
which is stable at large size but involves sequential computations, for their efficient
implementation.
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