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We develop in this paper a new regularized flow dynamic approach to construct efficient numerical 
schemes for Wasserstein gradient flows in Lagrangian coordinates. Instead of approximating the 
Wasserstein distance which needs to solve constrained minimization problems, we reformulate the 
problem using the Benamou-Brenier’s flow dynamic approach, leading to algorithms which only 
need to solve unconstrained minimization problem in 𝐿2 distance. Our schemes automatically 
inherit some essential properties of Wasserstein gradient systems such as positivity-preserving, 
mass conservative and energy dissipation. We present ample numerical simulations of Porous-

Medium equations, Keller-Segel equations and Aggregation equations to validate the accuracy and 
stability of the proposed schemes. Compared to numerical schemes in Eulerian coordinates, our 
new schemes can capture sharp interfaces for various Wasserstein gradient flows using relatively 
smaller number of unknowns.

1. Introduction

Equations that are gradient flows in the Wasserstein metric arise in many physical and biological applications, including Porous-

Medium equations [2,43], Poisson-Nernst-Planck equations [20,21] and Keller-Segel equations [24,26,47]. In this paper, we consider 
numerical approximation of Wasserstein gradient flows which take the following form [1]:

𝜕𝑡𝜌 = −∇ ⋅ (𝜌𝒗), 𝒗 = −∇ 𝛿𝐸

𝛿𝜌 
, (1.1)

with the initial value 𝜌(𝒙,0) = 𝜌0(𝒙) ≥ 0, where 𝜌(𝒙, 𝑡) is the particle density on the domain Ω ⊂ℝ𝑑 (𝑑 ≥ 1), and 𝒗 is the velocity field 
of the transport equation, and the energy functional is given by [14]

𝐸(𝜌) = ∫
Ω 

𝐹 (𝜌)d𝒙 = ∫
Ω 

𝑈 (𝜌(𝒙)) + 𝑉 (𝒙)𝜌(𝒙)d𝒙+ 1
2 ∫
Ω×Ω

𝑊 (𝒙− 𝒚)𝜌(𝒙)𝜌(𝒚)d𝒙d𝒚, (1.2)
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where 𝐹 (𝜌) is the energy density, 𝑈 (𝜌) is the internal energy which can be taken as 𝑈𝑚(𝑠) = 𝑠 log 𝑠 for 𝑚 = 1 and 𝑈𝑚(𝑠) =
𝑠𝑚

𝑚−1 for 
𝑚> 1, 𝑉 (𝒙) is a drift potential and 𝑊 (𝒙,𝒚) =𝑊 (𝒚,𝒙) is an interaction potential, see also [5,13]. Solutions of the Wasserstein gradient 
flows possess three essential properties: positivity-preserving; mass conservation; and the energy dissipation in the sense that

d 
d𝑡
𝐸(𝜌)(𝑡) = −∫

Ω 
𝜌|𝒗|2d𝒙. (1.3)

In recent years, considerable attention has been devoted to constructing structure-preserving schemes of various Wasserstein 
gradient flows (1.1), e.g., Porous-Medium equation [19,29,36,37,48], Fokker-Planck equation [18,25,32,34,40], Keller-Segel equation 
[16,23,35,41,44], drift diffusion and aggregation equation [9]. Specially, numerical methods based on the approximation for the 
Wasserstein metric have attracted much more attention, see [5,8–10,28]. For example, the celebrated Jordan-Kinderlehrer-Otto (JKO) 
scheme [25] is proposed to solve Fokker-Planck equation in [25]. The scheme preserves essential properties of the Wasserstein gradient 
flows, but a key difficulty of its numerical implementation is to approximate the Wasserstein metric efficiently. Benamou and Brenier 
discovered [4] that the Wasserstein metric can be rewritten into the Brenier formulae [4].

In the present work, we will adopt Benamou-Brenier’s dynamic formulation for the Wasserstein metric [4]. In particular, given 
two measures 𝜌0 and 𝜌1, their Wasserstein distance can be obtained by solving

⎧⎪⎨⎪⎩
𝑊2(𝜌0, 𝜌1) = inf𝜌,𝒗{∫ 1

0 ∫Ω |𝒗(𝒙, 𝑡)|2𝜌(𝒙, 𝑡)d𝒙d𝑡} 1
2 ,

𝑠.𝑡. 𝜕𝑡𝜌+∇ ⋅ (𝜌𝒗) = 0,
(𝜌𝑣) ⋅ 𝒏 = 0 on 𝜕Ω× [0,1], 𝜌(0,𝒙) = 𝜌0, 𝜌(1,𝒙) = 𝜌1,

(1.4)

where 𝒏 is the outer unit normal on the boundary of the domain Ω. Denote 𝒎 = 𝜌𝒗, then the original JKO scheme, proposed by 
Jordan, Kinderlehrer and Otto [25], can be reformulated into the following equivalent form [9,28]: given 𝜌𝑘, solve 𝜌𝑘+1 = 𝜌(1,𝒙) as

⎧⎪⎨⎪⎩
(𝜌,𝒎) = arg inf𝜌,𝒗

1 
2𝛿𝑡 ∫ 1

0 ∫Ω𝐺(𝜌,𝒎)d𝒙d𝑡+𝐸(𝜌(1,𝒙)),
𝑠.𝑡. 𝜕𝑡𝜌+∇ ⋅ (𝜌𝒗) = 0,
(𝜌𝒗) ⋅ 𝒏 = 0 on 𝜕Ω× [0,1], 𝜌(0,𝒙) = 𝜌𝑘,

(1.5)

where 𝐺(𝜌,𝒎) is defined by

𝐺(𝜌,𝒎) =
⎧⎪⎨⎪⎩

𝒎2

𝜌 , if 𝜌 > 0,
0, if (𝜌,𝒎) = (0,𝟎),
+∞, otherwise.

Various numerical methods [6,7,9,10,27,33] are proposed based on the dynamic formulation (1.5). But they usually require solving, 
at each time step, a constrained minimization problem which can be difficult and costly. We adopt in this paper the flow dynamic 
approach to develop a new class of numerical schemes in Lagrangian coordinates which only need to solve an unconstrained min-

imization problem at each time step. The relationship between the strong formula and variational formula is shown in Fig. 1. The 
strong formula is obtained directly by discretizing the flow map equation, while the variational formula is derived by combining 
the JKO scheme and the flow map. It is noteworthy that the two forms are equivalent. This flow dynamic approach also enjoys the 
following advantages:

• It allows us to construct positivity-preserving schemes for Wasserstein gradient systems with positive solutions, and the schemes 
can also conserve mass in both semi-discrete and fully-discrete cases.

• Since the schemes are derived from an energetic variational approach, they are energy dissipative for Wasserstein gradient flows.

• The flow dynamic approach, behaving like a moving mesh method, can automatically capture the trajectory of movement in 
Lagrangian coordinates, and as a consequence, requires fewer spatial points than an Eulerian approach to capture the interface 
movements or solutions with large gradients.

We present several numerical results to validate the proposed approach. In particular, for Porous-Medium equations, our numerical 
schemes can accurately capture the sharp interface, and obtain the correct finite propagation speed and waiting time; and for the 
Keller-Segel equations, they allow us to simulate the phenomenon of blow-up.

The rest of the paper is organized as follows. In Section 2, the semi-discrete numerical scheme is proposed for the Wasserstein 
gradient flow (1.1). In Section 3, fully discrete numerical schemes for the Wasserstein gradient flow (1.1) in 1D and 2D are constructed 
and analyzed, respectively. Numerical experiments in 1D and 2D are carried out in Section 4 to validate the theoretical results.

2. Regularized flow dynamic approach

As our objective is to develop numerical methods for Wasserstein gradient flows based on flow dynamic approach, we will first 
introduce this approach [17,29,45] and then apply it to Wasserstein gradient flows in the semi-discrete case.
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Fig. 1. Relationship between the strong formula and the variational formula for Wasserstein gradient flows. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 2. A schematic illustration of a flow map 𝒙(𝑿, 𝑡) at a fixed time 𝑡: 𝒙(𝑿, 𝑡) maps Ω𝑿
0 to Ω𝒙

𝑡
. 𝑿 is the Lagrangian coordinate while 𝒙 is the Eulerian coordinate, and 

𝐹 (𝑿, 𝑡) = 𝜕𝒙(𝑿,𝑡)
𝜕𝑿

represents the deformation associated with the flow map.

Given an initial position or a reference configuration 𝑿 , and a velocity field 𝒗, define the flow map 𝒙(𝑿, 𝑡) [17,18] as follows:

d𝒙(𝑿, 𝑡)
d𝑡 

= 𝒗(𝒙(𝑿, 𝑡), 𝑡), (2.1)

𝒙(𝑿,0) =𝑿, (2.2)

where 𝒙 is the Eulerian coordinate and 𝑿 is the Lagrangian coordinate, 𝜕𝒙
𝜕𝑿

represents the deformation associated with the flow map, 
see Fig. 2. We assume that 𝒗 is the velocity such that

𝜕𝑡𝜌+∇ ⋅ (𝜌𝒗) = 0. (2.3)

Then the transport equation (2.3) and the flow map (2.1)-(2.2) determine the following kinematic relationship between the 
Eulerian and Lagrangian coordinates:

𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

= 𝜌(𝒙, 𝑡). (2.4)

According to the Energetic Variational Approach [21,30,31,38,39,42], from the energy dissipative law (1.3) of Wasserstein gra-

dient flows, we can use the least action principle and the maximum dissipation law to derive the conservative and dissipative forces, 
respectively [17–19,29–31,45,46]:

𝐹conservative = − 𝛿𝐸

𝛿𝒙
= −𝜌∇𝒙

𝛿𝐸

𝛿𝜌 
, 𝐹dissipative =

𝛿
1
2 ∫Ω 𝜌|𝒗|2d𝒙

𝛿𝒗
= 𝜌𝒗,

and then apply the force balance law to obtain the following constitutive relation:
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𝐹conservative = − 𝛿𝐸

𝛿𝒙
= 𝜌𝒗 = 𝐹dissipative. (2.5)

Combining (2.5) with Wasserstein gradient system (1.1), we derive the following equivalent formulation:

𝜌𝒗 = 𝜌
d𝒙
d𝑡 

= − 𝛿𝐸

𝛿𝒙
= −𝜌∇𝒙

𝛿𝐸

𝛿𝜌 
, (2.6)

which can be written in Lagrangian coordinates as

𝜌(𝑿,0) d𝒙
d𝑡 

+ 𝜌(𝑿,0)∇𝒙

𝛿𝐸

𝛿𝝆
= 0. (2.7)

Notice that equation (2.7) is a fully nonlinear equation with respect to 𝒙 in Lagrangian coordinate. By adding an extra regularizing 
term into (2.7), we obtain

𝜌(𝑿,0) d𝒙
d𝑡 

− 𝜖Δ𝐗𝒙+ 𝜌(𝐗,0)∇𝒙

𝛿𝐸

𝛿𝝆
= 0, (2.8)

where 𝜖 ≪ 1 is a non-negative regularization parameter.

Notice that 𝐹 (𝑿, 𝑡) = 𝜕𝒙(𝑿,𝑡)
𝜕𝑿

represents the deformation associated with the flow map, the term 𝜖Δ𝐗𝒙 can be interpreted as a 
viscous term to smooth the computational meshes from a geometric perspective. Taking the inner product of (2.8) with 𝒙𝑡, we obtain 
the following energy dissipative law:

d 
d𝑡
�̃�(𝑡) = −∫

Ω𝑿
0

𝜌(𝑿,0)|d𝒙
d𝑡 
|2d𝑿, (2.9)

where �̃� is defined by �̃�(𝑡) =𝐸(𝑡) + 𝜖

2 ∫Ω𝑿
0
|∇𝑿𝒙|2d𝑿.

Another regularized approach is

𝜌(𝑿,0) d𝒙
d𝑡 

− 𝜖Δ𝑿

d𝒙
d𝑡 

+ 𝜌(𝑿,0)∇𝒙

𝛿𝐸

𝛿𝝆
= 0, (2.10)

which satisfies the following energy dissipative law:

d 
d𝑡
𝐸(𝑡) = −∫

Ω𝑿
0

𝜌(𝑿,0)|d𝒙
d𝑡 
|2d𝑿 − ∫

Ω𝑿
0

𝜖|∇𝑿

d𝒙
d𝑡 
|2d𝑿 ≤ 0. (2.11)

This regularized approach can be used to construct second-order Lagrangian schemes for wasserstein gradient flow (1.1) where the 
regularization term is 𝜖Δ𝑿

d𝒙
d𝑡 in (2.10) with 0 ≤ 𝜖 ≪ 1.

Remark 2.1. For both regularized approaches proposed above, the regularized terms in the force balance equations (2.8) and (2.10)

can be regarded as adding a small extra force into the original force balance equations

𝐹𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 − 𝐹𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑣𝑒 = 𝜖𝐹𝑒𝑥𝑡𝑟𝑎 𝑓𝑜𝑟𝑐𝑒, (2.12)

where the extra force can be frictional force or viscous force. Actually, the extra energy dissipative term in (2.11) ∫Ω𝑿
0
𝜖|∇𝑿

d𝒙
d𝑡 |2d𝑿

will be converted into heat due to the work done by frictional force.

2.1. Numerical schemes based on the FDM approach

We observed from (2.9) that the flow map 𝒙 also satisfies a gradient flow structure in Lagrangian coordinate. A benefit of the 
gradient flow structure is that one can construct numerical schemes to inherit the energy dissipation of the gradient flows. In contrast 
to the classic JKO scheme [25], we shall construct numerical schemes based on FDM approach which do not involve the calculation 
of the Wasserstein metric, but only of a 𝐿2 distance which is much easier to obtain.

2.1.1. First-order scheme

Given 𝛿𝑡 > 0, 𝑡𝑘 = 𝑘𝛿𝑡 for 𝑘 = 0, 1, ⋯, 𝑇
𝛿𝑡

, let 𝒙𝑘 denote the numerical approximation to 𝒙(⋅, 𝑡𝑘). Then, a first-order scheme in a 
variational form to the solution of (2.8) at 𝑡𝑘+1 can be obtained by

⎧⎪⎨⎪⎩
𝒙𝑘+1 ∶= arg inf𝒙

1 
2𝛿𝑡 ∫Ω𝑿

0
𝜌(𝑿,0)|𝒙− 𝒙𝑘|2d𝑿 + 𝜖

2 ∫Ω𝑿
0
|∇𝐗𝒙|2d𝐗+𝐸(𝒙),

𝜌𝑘+1 = 𝜌(𝑿,0) 
det 𝜕𝒙

𝑘+1
𝜕𝑿

.
(2.13)

Motivated from the minimization problem (2.13), a first-order semi-discrete scheme for (1.1) based on (2.8) with 𝜖 = 𝛿𝑡 and (2.13)

is:
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𝜌(𝑿,0)𝒙
𝑘+1 − 𝒙𝑘

𝛿𝑡 
− 𝛿𝑡Δ𝑿𝒙

𝑘+1 + 𝜌(𝑿,0)∇𝒙𝐹
′
⎛⎜⎜⎝
𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

⎞⎟⎟⎠ = 0, (2.14)

𝜌𝑘+1 = 𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

, (2.15)

with the Dirichlet boundary condition 𝒙𝑘+1|𝜕Ω =𝑿|𝜕Ω, and Ω𝒙
0 = Ω𝑿

0 .

We will show that the numerical scheme (2.14)-(2.15) in Lagrangian coordinate achieves a first-order accuracy to (1.1) in Eulerian 
coordinate:

Proposition 2.1. The solution 𝜌𝑘+1 to numerical scheme (2.14)-(2.15) is a first-order approximation to the exact solution of Wasserstein 
gradient flow (1.1) at 𝑡𝑘+1.

Proof. Firstly, we shall calculate the variational derivative of the energy 𝐸:

𝛿𝐸 =∫
Ω𝑿
0

−𝐹 ′

(
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

)
𝜌(𝑿,0) (
det 𝜕𝒙

𝜕𝑿

)2 det 𝜕𝒙𝜕𝑿 𝜕𝛿𝒙

𝜕𝑿
+ 𝐹

(
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

)
𝜕𝛿𝒙

𝜕𝑿
d𝑿

=∫
Ω𝑿
0

𝜕𝑿

⎛⎜⎜⎜⎝𝐹
′

(
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

)
𝜌(𝑿,0) (
det 𝜕𝒙

𝜕𝑿

)2 det 𝜕𝒙𝜕𝑋 − 𝐹

(
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

)⎞⎟⎟⎟⎠𝛿𝒙d𝑿
=∫
Ω𝑿
0

𝜕𝑿

(
𝐹 ′

(
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

)
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

− 𝐹

(
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

))
𝛿𝒙d𝑿

=∫
Ω𝑿
0

𝜕𝒙
(
𝐹 ′ (𝜌)𝜌− 𝐹 (𝜌)

)
𝛿𝒙d𝒙 = ∫

Ω𝑿
0

𝜌𝜕𝒙𝐹
′(𝜌)𝛿𝒙d𝒙. (2.16)

We can then derive from (2.16) the variational derivatives of 𝐸 in Eulerian coordinates and Lagrangian coordinates, respectively:

𝛿𝐸

𝛿𝒙
= 𝜌𝜕𝒙𝐹

′(𝜌), (2.17)

𝛿𝐸

𝛿𝒙
= 𝜕𝑿

(
𝐹 ′

(
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

)
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

− 𝐹

(
𝜌(𝑿,0)
det 𝜕𝒙

𝜕𝑿

))
= 𝜌(𝑿,0)

𝜕𝑿𝐹
′
(

𝜌(𝑿,0) 
det 𝜕𝒙

𝜕𝑿

)
det 𝜕𝒙

𝜕𝑿

. (2.18)

From (2.18), we observe that the last term in (2.14) is exactly the variational derivative of 𝐸( 𝜌(𝑿,0) 
det 𝜕𝒙

𝜕𝑿

) with respective to 𝒙 in 

Lagrangian coordinates. Then the equation (2.14) can be obtained by taking the variational derivative of (2.13) with respect to 𝒙, 
which also show that the minimizer (𝒙𝑘+1, 𝜌𝑘+1) of the variational problem (2.13) is the solution of (2.14)-(2.15). Assuming that 
𝜌(𝐗,0) ≠ 0 and rewriting the equation (2.14) into the following equivalent form:

𝒙𝑘+1 − 𝒙𝑘

𝛿𝑡 
= 𝛿𝑡 
𝜌(𝑿,0)

Δ𝑿𝒙
𝑘+1 − ∇𝒙𝐹

′
⎛⎜⎜⎝
𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

⎞⎟⎟⎠ . (2.19)

Notice the definition of flow map 𝒗(𝑿, 𝑡𝑘+1) = d𝒙(𝑿,𝑡𝑘+1)
d𝑡 , we can easily derive from (2.19) that

𝒗𝑘+1 = −∇𝒙𝐹
′(𝜌(𝒙𝑘+1)) +𝑂(𝛿𝑡) = −∇𝒙(

𝛿𝐸

𝛿𝜌 
)𝑘+1 +𝑂(𝛿𝑡).

Then we conclude that the numerical scheme (2.14) achieves a first-order accuracy in time for the Wasserstein gradient flow (1.1). □

Remark 2.2. It is worth mentioning that there are several choices to add the regularization term in scheme (2.13), such as 
∫Ω𝑿

0
𝛿𝑡𝜌(𝑿,0)|∇𝑿𝒙|2d𝑿 and ∫Ω𝑿

0
|∇𝑿 (𝒙 − 𝒙𝑘)|2d𝑿, which can also be proved to be a first-order approximation to the Wasserstein 

gradient flow (1.1).

Remark 2.3. We can solve the nonlinear scheme (2.14)–(2.15) by using the damped Newton’s iteration. Denote the linear and 
nonlinear operators by
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(𝒙𝑘+1) ∶= 𝜌(𝑿,0)
𝛿𝑡 

𝒙𝑘+1 − 𝛿𝑡Δ𝑿𝒙
𝑘+1,  (𝒙𝑘+1) ∶= 𝜌(𝑿,0)∇𝒙𝐹

′
⎛⎜⎜⎝
𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

⎞⎟⎟⎠ ,
and 𝑏(𝒙𝑘) ∶= 𝜌(𝑿,0)

𝛿𝑡 𝒙𝑘, then the scheme (2.14) can be reformulated as a nonlinear system

(𝒙𝑘+1) + (𝒙𝑘+1) = 𝑏(𝒙𝑘),

which can be solved iteratively by finding 𝒙𝑘+1,𝑛+1, such that

𝒙𝑘+1,𝑛+1 = 𝒙𝑘+1,𝑛 + 𝛼𝛿𝒙, with 𝛿𝒙 = 𝑏(𝒙𝑘) −(𝒙𝑘+1,𝑛) − (𝒙𝑘+1,𝑛)
′(𝒙𝑘+1,𝑛) + ′(𝒙𝑘+1,𝑛) 

,

where 0 < 𝛼 ≤ 1 is a damping coefficient. For Keller-Segel equations, Porous medium equations and Aggregation diffusion equations, 
we can obtain good accuracy and convergence rates by using the standard Newton’s iteration with 𝛼 = 1. Then, we just set the damped 
coefficient 𝛼 = 1 to compute numerical solutions in the numerical experiments presented in Section 4.

2.1.2. Second-order scheme

In analogy to the first-order scheme (2.14)-(2.15), we can construct a second-order scheme for (1.1) based on a Crank-Nicolson 
discretization of (2.10) with 𝜖 = 𝛿𝑡2:⎧⎪⎪⎨⎪⎪⎩

𝒙𝑘+1 = arg inf𝒙
1 
2𝛿𝑡 ∫Ω𝑿

0
𝜌(𝑿,0)|𝒙− 𝒙𝑘|2 + 𝛿𝑡2(|∇𝑿 (𝒙− 𝒙𝑘)|2)d𝑿

+1
2𝐸

(
𝜌(𝑿,0) 
det 𝜕𝒙

𝜕𝑿

)
+ 1

2 ∫Ω𝑿
0
𝒙( 𝛿𝐸

𝛿𝒙
)𝑘d𝑿,

𝜌𝑘+1 = 𝜌(𝑿,0) 
det 𝜕𝒙

𝑘+1
𝜕𝑿

.

(2.20)

Next, we show that the above unconstrained minimization problem is equivalent to a Crank-Nicolson discretization.

Theorem 2.4. For any 𝑘 > 0, the minimizer of the variational problem (2.20) is the solution of the following second-order Crank-Nicolson 
scheme: given (𝒙𝑘, 𝜌(𝑿,0)), solve (𝒙𝑘+1, 𝜌𝑘+1) from

𝜌(𝑿,0)𝒙
𝑘+1 − 𝒙𝑘

𝛿𝑡 
− 𝛿𝑡(Δ𝑿𝒙

𝑘+1 −Δ𝑿𝒙
𝑘) + 1

2
𝜌(𝑿,0)∇𝒙𝐹

′
⎛⎜⎜⎝
𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

⎞⎟⎟⎠
+ 1

2
𝜌(𝑿,0)∇𝒙𝐹

′
⎛⎜⎜⎝
𝜌(𝑿,0)

det 𝜕𝒙
𝑘

𝜕𝑿

⎞⎟⎟⎠ = 0, (2.21)

𝜌𝑘+1 = 𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

, (2.22)

with the Dirichlet boundary condition 𝒙𝑘+1|𝜕Ω =𝑿|𝜕Ω.

Proof. The equation (2.21) can be obtained by taking the variational derivative of (2.20) with respect to 𝒙, then the minimizer 
(𝒙𝑘+1, 𝜌𝑘+1) of the minimization problem (2.20) is the solution of (2.21) with (2.15). The equation (2.21) can be rewritten into

𝒙𝑘+1 − 𝒙𝑘

𝛿𝑡 
− 𝛿𝑡 
𝜌(𝑿,0)

(Δ𝑿𝒙
𝑘+1 − Δ𝑿𝒙

𝑘) + 1
2
∇𝒙𝐹

′
⎛⎜⎜⎝
𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

⎞⎟⎟⎠+ 1
2
∇𝒙𝐹

′
⎛⎜⎜⎝
𝜌(𝑿,0)

det 𝜕𝒙
𝑘

𝜕𝑿

⎞⎟⎟⎠ = 0,

which is equivalent to

𝒗
𝑘+ 1

2 = −∇𝒙𝐹
′(𝜌(𝒙𝑘+

1
2 )) +𝑂(𝛿𝑡2) = −∇𝒙(

𝛿𝐸

𝛿𝜌 
)𝑘+

1
2 +𝑂(𝛿𝑡2),

where the fact that the term 12∇𝒙𝐹
′(𝜌(𝒙𝑘)) + 1

2∇𝒙𝐹
′(𝜌(𝒙𝑘+1)) is a second-order approximation to ∇𝒙𝐹

′(𝜌(𝒙𝑘+
1
2 )) has been utilized. 

Then the numerical scheme (2.21) is a second-order time discretization for the Wasserstein gradient flow (1.1). □

Similarly as in the last subsection, we can also show that 𝜌𝑘+1 obtained from (2.20) is a second-order approximation to the solution 
𝜌(𝒙, 𝑡) at 𝑡 = 𝑡𝑘+1.

Proposition 2.2. The solution 𝜌𝑘+1 to numerical scheme (2.21)-(2.22) is a second-order approximation to the exact solution of Wasserstein 
gradient flow (1.1) at 𝑡𝑘+1.

The proof is analogous to that of Proposition 2.1 so we omit it for the sake of brevity.
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Remark 2.5. Similarly as (2.14), the nonlinear scheme (2.21) can also be reformulated as a nonlinear system

(𝒙𝑘+1) + 1
2
 (𝒙𝑘+1) =(𝒙𝑘) − 1

2
 (𝒙𝑘),

which can be solved by finding 𝒙𝑘+1,𝑛+1, such that

𝒙𝑘+1,𝑛+1 = 𝒙𝑘+1,𝑛 + 𝛼𝛿𝒙, with 𝛿𝒙 =
(𝒙𝑘 − 𝒙𝑘+1,𝑛) − 1

2 (𝒙𝑘) − 1
2 (𝒙𝑘+1,𝑛)

′(𝒙𝑘+1,𝑛) + 1
2 ′(𝒙𝑘+1,𝑛) 

,

where 0 < 𝛼 ≤ 1 is a damping coefficient.

Remark 2.6. From energy stability we can only derive that the norm ‖∇𝑿𝒙
𝑘+1‖ is bounded. For both first-order and second-order 

Lagrangian schemes proposed above based on the regularized flow dynamic approach, we shall make very refined error analysis to 
clarify that the regularized terms should be 𝛿𝑡Δ𝑿𝒙𝑘+1 =𝑂(𝛿𝑡) and 𝛿𝑡(Δ𝑿𝒙

𝑘+1 −Δ𝑿𝒙
𝑘) =𝑂(𝛿𝑡2) in which the bound of ‖Δ𝑿𝒙

𝑘+1‖∞
is needed.

2.2. Properties of numerical schemes based on FDM approach

Now we show that our numerical schemes based on the FDM approach inherit essential properties of the Wasserstein gradient 
flows. More precisely, we have

Theorem 2.7. For any 0 ≤ 𝑘 ≤ 𝑇

𝛿𝑡
, assume initial value 𝜌(𝑿,0) > 0 and consider the internal energy to be the form of 𝑈 (𝑠) = 𝑠 log 𝑠 in 

(2.13), then the solution 𝜌𝑘+1(𝒙) of numerical scheme (2.14)-(2.15) satisfies the following properties:

• The numerical solution 𝜌𝑘+1 > 0 is also positive.

• The scheme (2.14)-(2.15) is mass conservative in the sense that

∫
Ω𝒙
𝑡

𝜌𝑘+1(𝒙)d𝒙 = ∫
Ω𝑿
0

𝜌(𝑿,0)d𝑿. (2.23)

• It is unconditionally energy stable in the sense that

𝐸(𝒙𝑘+1) + 𝛿𝑡

2 ∫
Ω𝑿
0

|∇𝑿𝒙
𝑘+1|2d𝑿 ≤𝐸(𝒙𝑘) + 𝛿𝑡

2 ∫
Ω𝑿
0

|∇𝑿𝒙
𝑘|2d𝑿. (2.24)

Proof. Since we choose the internal energy 𝑈 (𝑠) to be the form of 𝑠 log 𝑠 and 𝒙𝑘+1 is the minimizer of variational problem (2.13), 
then 𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1
𝜕𝑿

should stay in the domain of the logarithmic function which implies 𝜌𝑘+1 > 0.

Using the equality (2.15), we derive

∫
Ω𝒙
𝑡

𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

d𝒙 = ∫
Ω𝑿
0

𝜌(𝑿,0) 

det 𝜕𝒙
𝑘+1

𝜕𝑿

det 𝜕𝒙
𝑘+1

𝜕𝑿
d𝑿 = ∫

Ω𝑿
0

𝜌(𝑿,0)d𝑿,

where the equality det 𝜕𝒙
𝑘+1

𝜕𝑿
d𝑿 = d𝒙 has been used. Then the scheme (2.14)-(2.15) is mass conservative.

From the minimization problem (2.13), we obtain that

𝐸(𝒙𝑘+1) + 𝛿𝑡

2 ∫
Ω𝑿
0

|∇𝑿𝒙
𝑘+1|2d𝑿 ≤𝐸(𝒙𝑘) + 𝛿𝑡

2 ∫
Ω𝑿
0

|∇𝑿𝒙
𝑘|2d𝑿,

the energy stability property is arrived. □

Remark 2.8. If the regularization term in (2.13) is taken as ∫Ω𝑿
0
|∇𝑿 (𝒙 − 𝒙𝑘)|2d𝑿, the energy dissipation 𝐸(𝒙𝑘+1) ≤ 𝐸(𝒙𝑘) for any 

0 ≤ 𝑘 ≤ 𝑇

𝛿𝑡
can also be derived.

Remark 2.9. Similarly to the first-order scheme (2.14)-(2.15), we can show that the second-order Crank-Nicolson scheme (2.21) is 
mass conservative and its numerical solution 𝜌𝑘+1 is also positivity-preserving if the internal energy is chosen as a logarithm type 
function. But we are unable to prove that the Crank-Nicolson scheme (2.21) is energy dissipative.
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3. Fully discretizations based on FDM approach

In this section, we provide more details about the spatial discretizations and propose full discrete schemes for the Wasserstein 
gradient flows (1.1) based on the FDM approach. To better explain our approach, we first consider the discretization in one dimension, 
then we generalize our FDM approach to two-dimensional case. More specifically, we show that our fully discrete schemes are also 
positivity-preserving, mass conservative and energy dissipative.

3.1. Numerical scheme in 1D

In this subsection, we develop an implicit finite difference scheme for the Wasserstein gradient flows (1.1). For convenience, we 
define some notations, let Ω𝑋

0 = [−𝐿,𝐿] and Ω𝑥
0 = [−𝐿,𝐿] be the computational domain in Lagrangian and Eulerian coordinate and 

choose the spatial grids: −𝐿 =𝑋0 <𝑋1 <⋯ <𝑋𝑁 =𝐿. We define

𝑥𝑗 (𝑡𝑘) = 𝑥(𝑋𝑗, 𝑡𝑘), 0 ≤ 𝑗 ≤𝑁, 0 ≤ 𝑘 ≤ 𝑇

𝛿𝑡
,

𝜌𝑗 (𝑡𝑘) = 𝜌(𝑥𝑗 , 𝑡𝑘), 0 ≤ 𝑗 ≤𝑁, 0 ≤ 𝑘 ≤ 𝑇

𝛿𝑡
,

where 𝑋𝑗 =𝑋0 + 𝑗𝛿𝑋, 𝛿𝑋 =𝑋𝑗+1 −𝑋𝑗 .

For the following finite dimensional minimization problem, we define the admissible set 𝑆𝑎𝑑 ∶= {𝒙 ∶ 𝑥𝑗+1 > 𝑥𝑗 for 𝑗 = 0,1,⋯ ,𝑁−
1, and 𝑥0 =𝑋0, 𝑥𝑁 =𝑋𝑁}:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝒙𝑘+1 ∶= arg inf𝒙∈𝑆𝑎𝑑
1 
2𝛿𝑡

𝑁−1∑
𝑗=0 

𝜌(𝑋
𝑗+ 1

2
,0)|𝑥

𝑗+ 1
2
− 𝑥𝑘

𝑗+ 1
2

|2𝛿𝑋 + 𝜖

2

𝑁−1∑
𝑗=0 

|𝑥𝑗+1 − 𝑥𝑗

𝛿𝑋
|2𝛿𝑋

+𝐸ℎ(𝒙),

𝜌𝑘+1
𝑗+ 1

2

∶=
𝜌(𝑋

𝑗+ 1
2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

,

(3.1)

where 𝒙 = (𝑥0, 𝑥1,… , 𝑥𝑁−1, 𝑥𝑁 ), 𝑥
𝑗+ 1

2
∶= 1

2 (𝑥𝑗+1 + 𝑥𝑗 ), and the discrete energy is defined by

𝐸ℎ(𝒙) ∶=
𝑁−1∑
𝑗=0 

𝐹

⎛⎜⎜⎝
𝜌(𝑋

𝑗+ 1
2
,0)

𝑥𝑗+1−𝑥𝑗
𝛿𝑋

⎞⎟⎟⎠
𝑥𝑗+1 − 𝑥𝑗

𝛿𝑋
𝛿𝑋. (3.2)

Lemma 3.1. The minimizer of the variational problem (3.1) is the solution of the following numerical scheme with 𝜖 = 𝛿𝑡: given (𝒙𝑘, 𝜌(𝑋,0)), 
we solve (𝒙𝑘+1, 𝜌𝑘+1) from

1 
2𝛿𝑡

𝜌(𝑋
𝑗+ 1

2
,0)(𝑥𝑘+1

𝑗+ 1
2

− 𝑥𝑘
𝑗+ 1

2
)𝛿𝑋 + 1 

2𝛿𝑡
𝜌(𝑋

𝑗− 1
2
,0)(𝑥𝑘+1

𝑗− 1
2

− 𝑥𝑘
𝑗− 1

2
)𝛿𝑋

− 𝛿𝑡
𝑥𝑘+1
𝑗+1 − 2𝑥𝑘+1

𝑗
+ 𝑥𝑘+1

𝑗−1

(𝛿𝑋)2
𝛿𝑋 +

𝛿𝐸ℎ

𝛿𝑥𝑗
(𝒙𝑘+1) = 0, (3.3)

𝜌𝑘+1
𝑗+ 1

2
∶=

𝜌(𝑋
𝑗+ 1

2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

, 𝑗 = 0,1⋯ ,𝑁 − 1, (3.4)

with the initial and boundary conditions

𝒙0 = (𝑋0,𝑋1,⋯ ,𝑋𝑁 ) and 𝑥𝑘+10 =𝑋0, 𝑥𝑘+1
𝑁

=𝑋𝑁. (3.5)

The last term 𝛿𝐸ℎ

𝛿𝑥𝑗
(𝒙𝑘+1) in (3.3) is defined as follows:

𝛿𝐸ℎ

𝛿𝑥𝑗
(𝒙𝑘+1) =𝐹 ′

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗+ 1
2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

⎞⎟⎟⎟⎠
𝜌(𝑋

𝑗+ 1
2
,0)𝛿𝑋

(𝑥𝑘+1
𝑗+1 − 𝑥𝑘+1

𝑗
)2
𝑥𝑘+1
𝑗+1 − 𝑥𝑘+1

𝑗

𝛿𝑋
𝛿𝑋 − 𝐹

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗− 1
2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

⎞⎟⎟⎟⎠
− 𝐹 ′

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗− 1
2
,0)

𝑥𝑘+1
𝑗

−𝑥𝑘+1
𝑗−1

𝛿𝑋

⎞⎟⎟⎟⎠
𝜌(𝑋

𝑗− 1
2
,0)𝛿𝑋

(𝑥𝑘+1
𝑗

− 𝑥𝑘+1
𝑗−1 )

2

𝑥𝑘+1
𝑗

− 𝑥𝑘+1
𝑗−1

𝛿𝑋
𝛿𝑋 + 𝐹

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗− 1
2
,0)

𝑥𝑘+1
𝑗

−𝑥𝑘+1
𝑗−1

𝛿𝑋

⎞⎟⎟⎟⎠
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=𝐹 ′
⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗+ 1
2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

⎞⎟⎟⎟⎠
𝜌(𝑋

𝑗+ 1
2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

− 𝐹

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗− 1
2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

⎞⎟⎟⎟⎠
− 𝐹 ′

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗− 1
2
,0)

𝑥𝑘+1
𝑗

−𝑥𝑘+1
𝑗−1

𝛿𝑋

⎞⎟⎟⎟⎠
𝜌(𝑋

𝑗− 1
2
,0)

𝑥𝑘+1
𝑗

−𝑥𝑘+1
𝑗−1

𝛿𝑋

+ 𝐹

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗− 1
2
,0)

𝑥𝑘+1
𝑗

−𝑥𝑘+1
𝑗−1

𝛿𝑋

⎞⎟⎟⎟⎠ .
Numerical scheme (3.3)-(3.4) can be applied to various Wasserstein gradient flows, for example:

• For the linear Fokker-Planck equation with one-well energy potential:

𝐸ℎ(𝒙) ∶=
𝑁−1∑
𝑗=0 

𝛿𝑋𝜌(𝑋
𝑗+ 1

2
,0)
⎛⎜⎜⎝log

⎛⎜⎜⎝
𝜌(𝑋

𝑗+ 1
2
,0)

𝑥𝑗+1−𝑥𝑗
𝛿𝑋

⎞⎟⎟⎠+
|𝑥𝑗+1 + 𝑥𝑗 |2

8 

⎞⎟⎟⎠ , (3.6)

then we have

𝛿𝐸ℎ

𝛿𝑥𝑗
(𝒙𝑘+1) =𝛿𝑋

𝜌(𝑋
𝑗+ 1

2
,0) 

𝑥𝑘+1
𝑗+1 − 𝑥𝑘+1

𝑗

− 𝛿𝑋

𝜌(𝑋
𝑗− 1

2
,0) 

𝑥𝑘+1
𝑗

− 𝑥𝑘+1
𝑗−1

+ 𝛿𝑋

4 

(
𝜌(𝑋

𝑗+ 1
2
,0)(𝑥𝑘+1

𝑗+1 + 𝑥𝑘+1
𝑗

) + 𝜌(𝑋
𝑗− 1

2
,0)(𝑥𝑘+1

𝑗
+ 𝑥𝑘+1

𝑗−1 )
)
. (3.7)

• For the porous medium equation:

𝐸ℎ(𝒙) ∶=
1 

𝑚− 1

𝑁−1∑
𝑗=0 

(𝛿𝑋)𝑚𝜌𝑚(𝑋
𝑗+ 1

2
,0)(𝑥𝑗+1 − 𝑥𝑗 )−𝑚+1, 𝑚> 1, (3.8)

we obtain

𝛿𝐸ℎ

𝛿𝑥𝑗
(𝒙𝑘+1) = (𝛿𝑋)𝑚

⎛⎜⎜⎝
𝜌𝑚(𝑋

𝑗+ 1
2
,0) 

(𝑥𝑘+1
𝑗+1 − 𝑥𝑘+1

𝑗
)𝑚

−
𝜌𝑚(𝑋

𝑗− 1
2
,0) 

(𝑥𝑘+1
𝑗

− 𝑥𝑘+1
𝑗−1 )

𝑚

⎞⎟⎟⎠ . (3.9)

• For the aggregation equation with the interaction potential 𝑊 (𝑥), we consider the discrete energy as follows by treating 𝑥 implicit 
and 𝑦 explicit:

𝐸ℎ(𝒙𝑘+1) ∶=
𝑁−1∑
𝑗=0 

𝛿𝑋𝜌(𝑋
𝑗+ 1

2
,0)

𝑁−1∑
𝑖=0 

𝜌𝑘
𝑖+ 1

2

𝑥𝑘
𝑖+1

∫
𝑥𝑘
𝑖

𝑊 (𝑥𝑘+1
𝑗+ 1

2
− 𝑦)d𝑦, (3.10)

it can be calculated that

𝛿𝐸ℎ

𝛿𝑥𝑘+1
𝑗

(𝒙𝑘+1) =𝛿𝑋𝜌(𝑋
𝑗+ 1

2
,0)

𝑁−1∑
𝑖=0 

𝜌𝑘
𝑖+ 1

2

𝑥𝑘
𝑖+1

∫
𝑥𝑘
𝑖

1
2
𝑊 ′

𝑥
(𝑥𝑘+1

𝑗+ 1
2
− 𝑦)d𝑦

+ 𝛿𝑋𝜌(𝑋
𝑗− 1

2
,0)

𝑁−1∑
𝑖=0 

𝜌𝑘
𝑖+ 1

2

𝑥𝑘
𝑖+1

∫
𝑥𝑘
𝑖

1
2
𝑊 ′

𝑥
(𝑥𝑘+1

𝑗− 1
2
− 𝑦)d𝑦. (3.11)

The Hessian matrix can be calculated by

∇2𝐸ℎ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿2𝐸ℎ

𝛿(𝑥𝑘+11 )2
𝛿2𝐸ℎ

𝛿𝑥𝑘+11 𝛿𝑥𝑘+12
𝛿2𝐸ℎ

𝛿𝑥𝑘+12 𝛿𝑥𝑘+11

𝛿2𝐸ℎ

𝛿(𝑥𝑘+12 )2
𝛿2𝐸ℎ

𝛿𝑥𝑘+12 𝛿𝑥𝑘+13
𝛿2𝐸ℎ

𝛿𝑥𝑘+13 𝛿𝑥𝑘+12

𝛿2𝐸ℎ

𝛿(𝑥𝑘+13 )2
𝛿2𝐸ℎ

𝛿𝑥𝑘+13 𝛿𝑥𝑘+14
⋱ ⋱ ⋱

𝛿2𝐸ℎ

𝛿𝑥𝑘+1
𝑁−2𝛿𝑥

𝑘+1
𝑁−3

𝛿2𝐸ℎ

𝛿(𝑥𝑘+1
𝑁−2)

2
𝛿2𝐸ℎ

𝛿𝑥𝑘+1
𝑁−2𝛿𝑥

𝑘+1
𝑁−1

𝛿2𝐸ℎ

𝛿𝑥𝑘+1
𝑁−1𝛿𝑥

𝑘+1
𝑁−2

𝛿2𝐸ℎ

𝛿(𝑥𝑘+1
𝑁−1)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The discrete energy is strictly convex if the Hessian matrix ∇2𝐸ℎ is positive definite. For instance, when choosing 𝑊 (𝑥) =|𝑥|2
2 − ln |𝑥|, we can find that the discrete energy 𝐸ℎ(𝒙𝑘+1) is convex since 𝑊 ′′(𝑥) = 1 + 1 

𝑥2
> 0. However, for the Keller-Segel 

equation with 𝑈 (𝜌) = 𝜌 log𝜌 and 𝑊 (𝑥) = 1 
2𝜋 ln |𝑥|, we consider the discrete energy

𝐸ℎ(𝒙𝑘+1) =
𝑁−1∑
𝑖=0 

𝛿𝑋𝜌(𝑋
𝑖+ 1

2
,0) log

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑖+ 1
2
,0)

𝑥𝑘+1
𝑖+1 −𝑥

𝑘+1
𝑖

𝛿𝑋

⎞⎟⎟⎟⎠−
𝛿𝑋

2𝜋

𝑁−1∑
𝑖=0 

𝜌(𝑋
𝑖+ 1

2
,0)

×
𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
(𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗+1) ln(|𝑥𝑘+1𝑖+ 1
2
− 𝑥𝑘

𝑗+1|) − (𝑥𝑘+1
𝑖+ 1

2
− 𝑥𝑘

𝑗
) ln(|𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗
|)) , (3.12)

it is uncertain whether the discrete energy is convex. The details are shown in Appendix.

The fully discretized numerical scheme (3.3)-(3.4) in one dimensional case holds the following structure-preserving properties.

Theorem 3.2. Assume the initial value 𝜌(𝑋,0) > 0 for 𝑋 ∈ Ω𝑋
0 , the energy density 𝐹 (𝑠) satisfies 𝐹 (𝑠) ≥ 0 for 𝑠 ≥ 0, and lim 

𝑠→0
𝐹 ( 1

𝑠 )𝑠 =∞, 

then the scheme (3.3)-(3.4) has a unique solution 𝒙𝑘+1 ∈ 𝑆𝑎𝑑 when 𝛿
2𝐸ℎ

𝛿𝒙2
> 0, and the following properties hold:

• the solution to numerical scheme (3.3)-(3.4) is positive, 𝜌𝑘+1
𝑗+ 1

2

> 0,

• the numerical scheme (3.3)-(3.4) satisfies the property of mass conserving for the density 𝜌𝑘+1 in the sense that

𝑁−1∑
𝑗=0 

𝜌𝑘+1
𝑗+ 1

2
(𝑥𝑘+1

𝑗+1 − 𝑥𝑘+1
𝑗

) =
𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2
(𝑥𝑘

𝑗+1 − 𝑥𝑘
𝑗
) =

𝑁−1∑
𝑗=0 

𝜌(𝑋
𝑗+ 1

2
,0)𝛿𝑋, (3.13)

• the discrete energy in scheme (3.3)-(3.4) is dissipative in the sense that

�̃�ℎ(𝒙𝑘+1) ≤ �̃�ℎ(𝒙𝑘), (3.14)

where the energy �̃�ℎ(𝒙𝑘+1) is defined by

�̃�ℎ(𝒙𝑘+1) =𝐸ℎ(𝒙𝑘+1) +
𝑁−1∑
𝑖=0 

𝛿𝑡

2 

||||||
𝑥𝑘+1
𝑗+1 − 𝑥𝑘+1

𝑗

𝛿𝑋

||||||
2

𝛿𝑋. (3.15)

Proof. Step 1 (energy law):

We can easily check that 𝒙𝑘+1 is the minimizer of the following Lagrangian function which is defined by

𝐿(𝒙𝑘+1) = 1 
2𝛿𝑡

𝑁−1∑
𝑗=0 

(
𝜌(𝑋

𝑗+ 1
2
,0)|𝑥𝑘+1

𝑗+ 1
2
− 𝑥𝑘

𝑗+ 1
2
|2𝛿𝑋 + 𝛿𝑡2|𝑥𝑘+1𝑗+1 − 𝑥𝑘+1

𝑗

𝛿𝑋
|2𝛿𝑋)+𝐸ℎ(𝒙𝑘+1). (3.16)

Since 𝑥𝑘+1
𝑗

is the minimizer of (3.1), it is easy to show that the discrete energy is dissipative in the sense that

𝐸ℎ(𝒙𝑘+1) +
𝑁−1∑
𝑖=0 

𝛿𝑡

2 
|𝑥𝑘+1𝑗+1 − 𝑥𝑘+1

𝑗

𝛿𝑋
|2𝛿𝑋 ≤𝐸ℎ(𝒙𝑘) +

𝑁−1∑
𝑖=0 

𝛿𝑡

2 
|𝑥𝑘𝑗+1 − 𝑥𝑘

𝑗

𝛿𝑋
|2𝛿𝑋

≤𝐸ℎ(𝒙0) +
𝑁−1∑
𝑖=0 

𝛿𝑡

2 
|𝑥0𝑗+1 − 𝑥0

𝑗

𝛿𝑋
|2𝛿𝑋.

Step 2 (positivity-preserving):

Taking variational derivative with respect to the Lagrangian 𝜕𝐿 
𝜕𝑥𝑘+1

𝑗

= 0 for 𝑗 = 1, ⋯, 𝑁 − 1, we derive the numerical scheme 

(3.3). Obviously, the first two terms of (3.16) are strictly convex with respect to 𝒙𝑘+1. Combining the assumption that 𝛿
2𝐸ℎ

𝛿𝒙2
> 0, we 

find there exists a unique minimizer 𝒙𝑘+1 belonging to the closed convex set 𝑆𝑎𝑑 = {𝒙 ∶ 𝑥𝑗+1 ≥ 𝑥𝑗 for 𝑗 = 0,1,⋯ ,𝑁 − 1, 𝑥𝑗0+1 =
𝑥𝑗0 for some 0 ≤ 𝑗0 ≤𝑁 − 1, and 𝑥0 =𝑋0, 𝑥𝑁 =𝑋𝑁}.

Next, we prove that the minimizer does not lie on the boundary of 𝑆𝑎𝑑 by contradiction. We assume there exists a minimizer 𝒙𝑘+1
satisfies 𝑥𝑘+1

𝑗0+1
= 𝑥𝑘+1

𝑗0
for some 0 ≤ 𝑗0 ≤𝑁 − 1, then we obtain 𝐸(𝒙𝑘+1) =∞ since we have
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𝐹

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗0+
1
2
,0)

𝑥𝑘+1
𝑗0+1

−𝑥𝑘+1
𝑗0

𝛿𝑋

⎞⎟⎟⎟⎠
𝑥𝑘+1
𝑗0+1

− 𝑥𝑘+1
𝑗0

𝛿𝑋
=∞,

under the assumption lim 
𝑠→0

𝐹 ( 1
𝑠 )𝑠 =∞. The above result implies

𝐿(𝒙𝑘+1) =∞,

which leads to a contradiction. Then the minimizer 𝒙𝑘+1 must lie in the interior of the admissible set 𝑆𝑎𝑑 satisfying 𝑥𝑘+1
𝑗+1 > 𝑥𝑘+1

𝑗
for 

all 𝑗 = 0, 1, ⋯, 𝑁 − 1. Combining the 𝑥𝑗+1 ≥ 𝑥𝑗 and using the equality (3.4), the positivity of the numerical solution 𝜌𝑘+1
𝑗+ 1

2

can easily 

be obtained.

Step 3 (mass conserving):

From the equality (3.4), we derive the following result:

𝑁−1∑
𝑗=0 

𝜌𝑘+1
𝑗+ 1

2
(𝑥𝑘+1

𝑗+1 − 𝑥𝑘+1
𝑗

) =
𝑁−1∑
𝑗=0 

𝜌(𝑋
𝑗+ 1

2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

(𝑥𝑘+1
𝑗+1 − 𝑥𝑘+1

𝑗
) =

𝑁−1∑
𝑗=0 

𝜌(𝑋
𝑗+ 1

2
,0)𝛿𝑋,

which implies that the proposed scheme is mass conserving. Finally, the proof is completed. □

Remark 3.3. Specifically, for the porous medium equation and the Fokker-Planck equation, we have 𝛿
2𝐸ℎ

𝛿𝒙2
> 0 since the convexity of 

the energy, then Theorem 3.2 will also hold without the regularization term. Actually, numerical experiments for both models are 
implemented without the regularization term in Section 4.

Remark 3.4. To be specific, for the Fokker-Planck equation with energy (3.6) and porous medium equation with energy (3.8), from 
the energy dissipation law 𝐸ℎ(𝒙𝑘+1) ≤𝐸ℎ(𝒙0) +

𝑇 𝛿𝑋

2 , we have

𝐹

⎛⎜⎜⎜⎝
𝜌(𝑋

𝑗+ 1
2
,0)

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋

⎞⎟⎟⎟⎠
𝑥𝑘+1
𝑗+1 − 𝑥𝑘+1

𝑗

𝛿𝑋
≤𝐸ℎ(𝒙0) +

𝑇 𝛿𝑋

2 
, 0 ≤ 𝑗 ≤𝑁 − 1.

Using the fact that energy density in both cases satisfies 𝐹 ( 1
𝑠 )𝑠→∞ as 𝑠→ 0, we derive that 

𝑥𝑘+1
𝑗+1−𝑥

𝑘+1
𝑗

𝛿𝑋
> 0, 0≤ 𝑗 ≤𝑁 −1 is uniformly 

away from zero.

Remark 3.5. If the regularization term is taken as 
∑

𝑗 | (𝑥𝑘+1𝑗+1−𝑥
𝑘
𝑗+1)−(𝑥

𝑘+1
𝑗

−𝑥𝑘
𝑗
)

𝛿𝑋
|2𝛿𝑋, properties in Theorem 3.2 will also be derived, and 

the unconditionally discrete energy dissipation law 𝐸ℎ(𝒙𝑘+1) ≤𝐸ℎ(𝒙𝑘) holds.

Remark 3.6. In fact, the first term of the optimization problem (3.1) can also be substituted by

1
2

𝑁−1∑
𝑗=0 

𝜌(𝑋𝑗,0)|𝑥𝑘+1𝑗
− 𝑥𝑘

𝑗
|2𝛿𝑋 + 𝜌(𝑋𝑗+1,0)|𝑥𝑘+1𝑗+1 − 𝑥𝑘

𝑗+1|2𝛿𝑋,

which is also an approximation to ∫Ω𝑿
0
𝜌(𝑋,0)|𝑥𝑘+1 − 𝑥𝑘|2d𝑋. Then the corresponding numerical scheme follows

𝜌(𝑋𝑗,0)
𝑥𝑘+1
𝑗

− 𝑥𝑘
𝑗

𝛿𝑡 
𝛿𝑋 − 𝛿𝑡

𝑥𝑘+1
𝑗+1 − 2𝑥𝑘+1

𝑗
+ 𝑥𝑘+1

𝑗−1

(𝛿𝑋)2
𝛿𝑋 +

𝛿𝐸ℎ

𝛿𝑥𝑗
(𝒙𝑘+1) = 0, (3.17)

with the initial and boundary conditions (3.5), and 𝜌𝑘+1 defined by (3.4). The solution to scheme (3.17) also preserves properties 
proved in Theorem 3.2.

3.2. Two dimensional case

We extend our numerical approach to multidimensional case, for simplicity, we only consider two-dimensions. Denote 𝒙 = (𝑥, 𝑦), 
𝑿 = (𝑋,𝑌 ), and the Jacobian matrix 𝜕𝒙

𝜕𝑿
= 𝜕(𝑥,𝑦) 

𝜕(𝑋,𝑌 ) . Set Ω𝑿
0 = [−𝐿𝑥,𝐿𝑥] × [−𝐿𝑦,𝐿𝑦] with 𝐿𝑥, 𝐿𝑦 > 0, and Ω𝒙

0 = Ω𝑿
0 . Let 𝑀𝑥, 𝑀𝑦 ∈ ℕ

be given, and define the grid spacing ℎ𝑥 =
2𝐿𝑥
𝑀𝑥

, ℎ𝑦 =
2𝐿𝑦
𝑀𝑦

. Let 𝑋𝑖𝑗 =𝑋0 + 𝑗ℎ𝑥, 𝑌𝑖𝑗 = 𝑌0 + 𝑖ℎ𝑦 for 0 ≤ 𝑗 ≤𝑀𝑥, 0≤ 𝑖 ≤𝑀𝑦. We define

𝒙𝑖𝑗 (𝑡𝑘) = 𝒙(𝑋𝑖𝑗 , 𝑌𝑖𝑗 , 𝑡𝑘), 0 ≤ 𝑗 ≤𝑀𝑥, 0 ≤ 𝑖 ≤𝑀𝑦, 1 ≤ 𝑘 ≤ 𝑇

𝛿𝑡
,
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𝜌0
𝑖𝑗
= 𝜌(𝑋𝑖𝑗 , 𝑌𝑖𝑗 ,0) ≥ 0.

The explicit and implicit numerical schemes will be proposed in the following.

3.2.1. Implicit numerical scheme

The following fully implicit numerical scheme with the regularization term 𝜖Δ𝑿𝒙, 𝜖 = 𝛿𝑡 can be proposed: given (𝑥𝑘, 𝑦𝑘), solving 
(𝑥𝑘+1, 𝑦𝑘+1) from

𝜌0
𝑖𝑗

𝑥𝑘+1
𝑖𝑗

− 𝑥𝑘
𝑖𝑗

𝛿𝑡 
− 𝛿𝑡

(
𝑥𝑘+1
𝑖,𝑗+1 + 𝑥𝑘+1

𝑖,𝑗−1 − 2𝑥𝑘+1
𝑖𝑗

ℎ2
𝑥

+
𝑥𝑘+1
𝑖+1,𝑗 + 𝑥𝑘+1

𝑖−1,𝑗 − 2𝑥𝑘+1
𝑖𝑗

ℎ2
𝑦

)
+
𝛿�̄�ℎ

𝛿𝑥 
(𝒙𝑘+1

𝑖𝑗
) = 0, (3.18)

𝜌0
𝑖𝑗

𝑦𝑘+1
𝑖𝑗

− 𝑦𝑘
𝑖𝑗

𝛿𝑡 
− 𝛿𝑡

(
𝑦𝑘+1
𝑖,𝑗+1 + 𝑦𝑘+1

𝑖,𝑗−1 − 2𝑦𝑘+1
𝑖𝑗

ℎ2
𝑥

+
𝑦𝑘+1
𝑖+1,𝑗 + 𝑦𝑘+1

𝑖−1,𝑗 − 2𝑦𝑘+1
𝑖𝑗

ℎ2
𝑦

)
+
𝛿�̄�ℎ

𝛿𝑦 
(𝒙𝑘+1

𝑖𝑗
) = 0, (3.19)

with the following initial and boundary conditions:

𝒙0 =𝑿, 𝒙𝑘+1|𝜕Ω =𝑿|𝜕Ω. (3.20)

Then the density 𝜌𝑘+1
𝑖𝑗

can be obtained by

𝜌𝑘+1
𝑖𝑗

=
𝜌0
𝑖𝑗

𝑘+1
𝑖𝑗

with 𝑘+1
𝑖𝑗

=
|||||||
𝜕𝑥𝑘+1

𝑖𝑗

𝜕𝑋

𝜕𝑦𝑘+1
𝑖𝑗

𝜕𝑋
𝜕𝑥𝑘+1

𝑖𝑗

𝜕𝑌

𝜕𝑦𝑘+1
𝑖𝑗

𝜕𝑌

||||||| =
||||||||
𝑥𝑘+1
𝑖,𝑗+1−𝑥

𝑘+1
𝑖,𝑗−1

2ℎ𝑥

𝑦𝑘+1
𝑖,𝑗+1−𝑦

𝑘+1
𝑖,𝑗−1

2ℎ𝑥
𝑥𝑘+1
𝑖+1,𝑗−𝑥

𝑘+1
𝑖−1,𝑗

2ℎ𝑦

𝑦𝑘+1
𝑖+1,𝑗−𝑦

𝑘+1
𝑖−1,𝑗

2ℎ𝑦

|||||||| . (3.21)

The proposed fully implicit scheme (3.18)-(3.19) is highly nonlinear and should be solved in the admissible set 𝐸𝑎𝑑 = {𝒙 ∶ det 𝜕𝒙
𝜕𝑿
|𝑖𝑗 >

0 for all 𝑖, 𝑗 ∈ℕ, 𝒙|𝜕Ω =𝑿|𝜕Ω}. The solution of the implicit scheme (3.18)-(3.19) is the minimizer of the minimization problem:

𝒙𝑘+1 ∶= arg inf
𝒙∈𝐸𝑎𝑑

𝐽𝑘(𝒙), (3.22)

where 𝐽𝑘(𝒙) is defined by

𝐽𝑘(𝒙) =
1 
2𝛿𝑡

∑
𝑖,𝑗

𝜌0
𝑖𝑗
|𝒙𝑖𝑗 − 𝒙𝑘

𝑖𝑗
|2ℎ𝑥ℎ𝑦 + 𝛿𝑡2(|𝒙𝑖,𝑗+1 − 𝒙𝑖,𝑗

ℎ𝑥
|2 + |𝒙𝑖+1,𝑗 − 𝒙𝑖,𝑗

ℎ𝑦
|2)ℎ𝑥ℎ𝑦 + �̄�ℎ(𝒙),

with �̄�ℎ(𝒙) =
∑

𝑖,𝑗 𝐹

(
𝜌0
𝑖𝑗

det 𝜕𝒙
𝜕𝑿
|𝑖𝑗
)
det 𝜕𝒙

𝜕𝑿
|𝑖𝑗ℎ𝑥ℎ𝑦. Following the analysis in [10,29], we obtain the following result for the implicit nu-

merical scheme (3.18)-(3.19).

Theorem 3.7. Assume the density of energy 𝐹 (𝑠) satisfies lim 
𝑠→0

𝐹 ( 1
𝑠 )𝑠 =∞, and 𝐹 (𝑠)≥ 0 for 𝑠 ≥ 0. Then there exists a solution 𝒙𝑘+1 ∈𝐸𝑎𝑑

to the nonlinear numerical scheme (3.18)-(3.19), and the following energy dissipation law holds:

�̄�ℎ(𝒙𝑘+1) +
ℎ𝑥ℎ𝑦

2 
∑
𝑖,𝑗

𝛿𝑡

⎛⎜⎜⎝
||||||
𝒙𝑘+1
𝑖,𝑗+1 − 𝒙𝑘+1

𝑖,𝑗

ℎ𝑥

||||||
2

+
||||||
𝒙𝑘+1
𝑖+1,𝑗 − 𝒙𝑘+1

𝑖,𝑗

ℎ𝑦

||||||
2⎞⎟⎟⎠

≤�̄�ℎ(𝒙𝑘) +
ℎ𝑥ℎ𝑦

2 
∑
𝑖,𝑗

𝛿𝑡

⎛⎜⎜⎝
||||||
𝒙𝑘
𝑖,𝑗+1 − 𝒙𝑘

𝑖,𝑗

ℎ𝑥

||||||
2

+
||||||
𝒙𝑘
𝑖+1,𝑗 − 𝒙𝑘

𝑖,𝑗

ℎ𝑦

||||||
2⎞⎟⎟⎠ . (3.23)

Proof. The existence of the solution to the nonlinear numerical scheme (3.18)-(3.19) is equivalent to obtaining the minimizer of 
𝐽𝑘(𝒙) in the admissible set 𝐸𝑎𝑑 . Then we turn to prove the existence of the minimizer of the minimization problem (3.22). If the 
minimizer lies on the boundary of the admissible set, i.e. 𝒙 ∈ 𝜕𝐸𝑎𝑑 , we have 𝐽𝑘(𝒙) =∞, which is a contradiction. Following the proof 
in [10,29], the claim of the theorem will be derived once we show that the sub-level set

 ∶=
{
𝒙 ∈𝐸𝑎𝑑 ∶ 𝐽𝑘(𝒙) ≤ �̄�ℎ(𝒙𝑘) +

ℎ𝑥ℎ𝑦

2 
∑
𝑖,𝑗

𝛿𝑡(|𝒙𝑘𝑖,𝑗+1 − 𝒙𝑘
𝑖,𝑗

ℎ𝑥
|2 + |𝒙𝑘𝑖+1,𝑗 − 𝒙𝑘

𝑖,𝑗

ℎ𝑦
|2) ∶= 𝛾

}
is a non-empty compact subset of ℝ2. Clearly, 𝒙𝑘 ∈  , so it is non-empty.

 is bounded. Assume the initial value 𝜌0
𝑖𝑗
> 0, there exists 𝜆 > 0 such that

𝜆 
2𝛿𝑡

∑
𝑖,𝑗

|𝒙𝑖𝑗 − 𝒙𝑘
𝑖𝑗
|2ℎ𝑥ℎ𝑦 ≤ 1 

2𝛿𝑡
∑
𝑖,𝑗

𝜌0
𝑖𝑗
|𝒙𝑖𝑗 − 𝒙𝑘

𝑖𝑗
|2ℎ𝑥ℎ𝑦 ≤ 𝛾. (3.24)

Then  is bounded.
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 is a closed subset of ℝ2. It suffices to show that the limit �̃� of any sequence {𝒙(𝑘)}∞
𝑘=1 ⊂𝐸𝑎𝑑 belongs to 𝐸𝑎𝑑 . For all 𝑘, we have

𝛾 ≥ �̄�ℎ(𝒙(𝑘)) ≥ ℎ𝑥ℎ𝑦𝐹

⎛⎜⎜⎝
𝜌0
𝑖𝑗

det 𝜕𝒙
(𝑘)

𝜕𝑿
|𝑖𝑗
⎞⎟⎟⎠det 𝜕𝒙

(𝑘)

𝜕𝑿

|||𝑖𝑗 . (3.25)

Since 𝐹

(
𝜌0
𝑖𝑗

det 𝜕𝒙
(𝑘)

𝜕𝑿
|𝑖𝑗
)
det 𝜕𝒙

(𝑘)

𝜕𝑿
|𝑖𝑗 → ∞ as det 𝜕𝒙

(𝑘)

𝜕𝑿
|𝑖𝑗 → 0, it follows that det 𝜕𝒙

(𝑘)

𝜕𝑿
|𝑖𝑗 > 0 is bounded away from zero, uniformly in 𝑘. 

Then we obtain det 𝜕�̃�
𝜕𝑿
|𝑖𝑗 > 0, and �̃�∈𝐸𝑎𝑑 .

If 𝒙𝑘+1 ∈  is a minimizer of the minimization problem (3.22), we have

�̄�ℎ(𝒙𝑘+1) +
ℎ𝑥ℎ𝑦

2 
∑
𝑖,𝑗

𝛿𝑡

(|𝒙𝑘+1𝑖,𝑗+1 − 𝒙𝑘+1
𝑖,𝑗

ℎ𝑥
|2 + |𝒙𝑘+1𝑖+1,𝑗 − 𝒙𝑘+1

𝑖,𝑗

ℎ𝑦
|2)

≤�̄�ℎ(𝒙𝑘) +
ℎ𝑥ℎ𝑦

2 
∑
𝑖,𝑗

𝛿𝑡

(|𝒙𝑘𝑖,𝑗+1 − 𝒙𝑘
𝑖,𝑗

ℎ𝑥
|2 + |𝒙𝑘𝑖+1,𝑗 − 𝒙𝑘

𝑖,𝑗

ℎ𝑦
|2) ,

which completes the proof. □

Remark 3.8. As stated in [10,29], we do not claim the uniqueness of the solution to the nonlinear numerical scheme (3.18)-(3.19)

due to the lack of convexity of 𝐽𝑘(𝒙) and �̄�ℎ(𝒙) in 𝑑-dimension (𝑑 ≥ 2).

Remark 3.9. The regularization term can also be taken as 𝜖
∑

𝑖,𝑗 (| 𝒙𝑖,𝑗+1−𝒙𝑖,𝑗−(𝒙𝑘𝑖,𝑗+1−𝒙𝑘𝑖,𝑗 )ℎ𝑥
|2 + | 𝒙𝑖+1,𝑗−𝒙𝑖,𝑗−(𝒙𝑘𝑖+1,𝑗−𝒙𝑘𝑖,𝑗 )

ℎ𝑦
|2), then the energy 

dissipation law still holds �̄�ℎ(𝒙𝑘+1) ≤ �̄�ℎ(𝒙𝑘).

3.2.2. Explicit numerical scheme

The trajectories (𝑥𝑘+1, 𝑦𝑘+1) can also be solved by the following linear scheme with the regularization term 𝜖Δ𝑿𝒙𝑘+1, 𝜖 = 𝛿𝑡, for 
given (𝑥𝑘, 𝑦𝑘):

𝜌0
𝑖𝑗

𝑥𝑘+1
𝑖𝑗

− 𝑥𝑘
𝑖𝑗

𝛿𝑡 
− 𝛿𝑡

(
𝑥𝑘+1
𝑖,𝑗+1 + 𝑥𝑘+1

𝑖,𝑗−1 − 2𝑥𝑘+1
𝑖𝑗

ℎ2
𝑥

+
𝑥𝑘+1
𝑖+1,𝑗 + 𝑥𝑘+1

𝑖−1,𝑗 − 2𝑥𝑘+1
𝑖𝑗

ℎ2
𝑦

)
+
𝛿�̄�ℎ

𝛿𝑥 
(𝒙𝑘

𝑖𝑗
) = 0, (3.26)

𝜌0
𝑖𝑗

𝑦𝑘+1
𝑖𝑗

− 𝑦𝑘
𝑖𝑗

𝛿𝑡 
− 𝛿𝑡

(
𝑦𝑘+1
𝑖,𝑗+1 + 𝑦𝑘+1

𝑖,𝑗−1 − 2𝑦𝑘+1
𝑖𝑗

ℎ2
𝑥

+
𝑦𝑘+1
𝑖+1,𝑗 + 𝑦𝑘+1

𝑖−1,𝑗 − 2𝑦𝑘+1
𝑖𝑗

ℎ2
𝑦

)
+
𝛿�̄�ℎ

𝛿𝑦 
(𝒙𝑘

𝑖𝑗
) = 0, (3.27)

with the initial and boundary conditions (3.20), then density 𝜌𝑘+1 will be derived by (3.21).

The last term 𝛿�̄�ℎ

𝛿𝒙
(𝒙𝑘) of the proposed numerical scheme (3.26)-(3.27) is taken to be fully explicit in the following numerical 

experiments. Obviously, the proposed scheme (3.26)-(3.27) admits a unique solution from its linearity. To be specific, we give some 
explicit formulas of 𝛿�̄�ℎ

𝛿𝒙
(𝒙𝑘) for various kinds of gradient flows.

For the porous medium equation, we have the following results for 𝑚 > 1:

𝛿�̃�ℎ

𝛿𝑥 
(𝒙𝑛) = 𝜕

𝜕𝑋

(
𝜌0

𝑛

)𝑚
𝜕𝑦𝑛

𝜕𝑌
− 𝜕

𝜕𝑌

(
𝜌0

𝑛

)𝑚
𝜕𝑦𝑛

𝜕𝑋
, (3.28)

𝛿�̃�ℎ

𝛿𝑦 
(𝒙𝑛) = 𝜕

𝜕𝑌

(
𝜌0

𝑛

)𝑚
𝜕𝑥𝑛

𝜕𝑋
− 𝜕

𝜕𝑋

(
𝜌0

𝑛

)𝑚
𝜕𝑥𝑛

𝜕𝑌
. (3.29)

For the aggregation-diffusion models, we have

𝛿�̃�ℎ

𝛿𝑥 
(𝒙𝑛

𝑖𝑗
) = 𝜕

𝜕𝑋

(
𝜌0

𝑛

)𝑚
𝜕𝑦𝑛

𝜕𝑌

|||𝑖𝑗 − 𝜕

𝜕𝑌

(
𝜌0

𝑛

)𝑚
𝜕𝑦𝑛

𝜕𝑋

|||𝑖𝑗 + 𝜈𝜌0
𝑖𝑗

∑
𝑝,𝑞

𝜌𝑛
𝑝,𝑞
𝑊 ′

𝑥
(𝒙𝑛

𝑖𝑗
− 𝒛𝑛

𝑝𝑞
)𝑉𝑝𝑞, (3.30)

𝛿�̃�ℎ

𝛿𝑦 
(𝒙𝑛

𝑖𝑗
) = 𝜕

𝜕𝑌

(
𝜌0

𝑛

)𝑚
𝜕𝑥𝑛

𝜕𝑋

|||𝑖𝑗 − 𝜕

𝜕𝑋

(
𝜌0

𝑛

)𝑚
𝜕𝑥𝑛

𝜕𝑌

|||𝑖𝑗 + 𝜈𝜌0
𝑖𝑗

∑
𝑝,𝑞

𝜌𝑛
𝑝,𝑞
𝑊 ′

𝑦
(𝒙𝑛

𝑖𝑗
− 𝒛𝑛

𝑝𝑞
)𝑉𝑝𝑞, (3.31)

where 𝑉𝑝𝑞 represents the area of the control volume of 𝒙𝑛
𝑝𝑞

, 𝑚 = 1 represents the linear diffusion case where 𝑈 (𝜌) = 𝜌 log𝜌, and 𝑚> 1
denotes the nonlinear diffusion case where 𝑈 (𝜌) = 1 

𝑚−1𝜌
𝑚.

Let us discuss the explicit numerical scheme (3.26)-(3.27) with a different regularization term 𝜖𝑘Δ𝑿 (𝒙𝑘+1 − 𝒙𝑘), 𝜖𝑘 ≥ 0, which 
also has a unique solution. We assume the solution belongs to the set 𝐸𝑎𝑑 ∶= {𝒙 ∶ det 𝜕𝒙

𝜕𝑿
|𝑖𝑗 > 0 for all 𝑖, 𝑗 ∈ ℕ, 𝒙|𝜕Ω =𝑿|𝜕Ω}, and 

introduce the following minimization problem in the admissible set 𝐸𝑎𝑑 :
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𝒙𝑘+1 ∶= arg inf
𝒙∈𝐸𝑎𝑑

𝐿𝑘(𝒙), (3.32)

where 𝐿𝑘(𝒙) is defined by

𝐿𝑘(𝒙) =
1 
2𝛿𝑡

∑
𝑖,𝑗

𝜌0
𝑖𝑗
|𝒙𝑖𝑗 − 𝒙𝑘

𝑖𝑗
|2ℎ𝑥ℎ𝑦 + 𝜖𝑘

2 
‖∇𝑿 (𝒙− 𝒙𝑘)‖2 + �̄�ℎ(𝒙𝑘) + (

𝛿�̄�ℎ

𝛿𝒙
(𝒙𝑘),𝒙− 𝒙𝑘),

with �̄�ℎ(𝒙) =
∑

𝑖,𝑗 𝐹

(
𝜌0
𝑖𝑗

det 𝜕𝒙
𝜕𝑿
|𝑖𝑗
)
det 𝜕𝒙

𝜕𝑿
|𝑖𝑗ℎ𝑥ℎ𝑦. Then the solution to the explicit numerical scheme (3.26)-(3.27) with regularization 

term 𝜖Δ𝑿 (𝒙𝑘+1 − 𝒙𝑘) is the minimizer of the minimization problem (3.32).

For the sake of simplicity, we consider the Porous-Medium equation in 2D, we have(
𝛿�̄�ℎ

𝛿𝑥 
(𝒙𝑘), 𝑥− 𝑥𝑘

)
= −

⎛⎜⎜⎝(
𝜌0

det 𝜕𝒙
𝑘

𝜕𝑿

)𝑚,det 𝜕((𝑥− 𝑥𝑘), 𝑦𝑘)
𝜕(𝑋,𝑌 ) 

⎞⎟⎟⎠ ,(
𝛿�̄�ℎ

𝛿𝑦 
(𝒙𝑘), 𝑦− 𝑦𝑘

)
= −

⎛⎜⎜⎝(
𝜌0

det 𝜕𝒙
𝑘

𝜕𝑿

)𝑚,det 𝜕(𝑥
𝑘, (𝑦− 𝑦𝑘))
𝜕(𝑋,𝑌 ) 

⎞⎟⎟⎠ ,(
𝛿2�̄�ℎ

𝛿𝑥2
(𝒙𝑘), (𝑥− 𝑥𝑘)2

)
=𝑚

⎛⎜⎜⎝
(𝜌0)𝑚

(det 𝜕𝒙
𝑘

𝜕𝑿
)𝑚+1

, (det 𝜕((𝑥− 𝑥𝑘), 𝑦𝑘)
𝜕(𝑋,𝑌 ) 

)2
⎞⎟⎟⎠ ,(

𝛿2�̄�ℎ

𝛿𝑦2
(𝒙𝑘), (𝑦− 𝑦𝑘)2

)
=𝑚

⎛⎜⎜⎝
(𝜌0)𝑚

(det 𝜕𝒙
𝑘

𝜕𝑿
)𝑚+1

, (det 𝜕(𝑥
𝑘, (𝑦− 𝑦𝑘))
𝜕(𝑋,𝑌 ) 

)2
⎞⎟⎟⎠ .

Assume that the initial value 𝜌(𝑿,0) ≥ 0 is bounded, and det 𝜕𝒙
𝑘

𝜕𝑿
> 0 is uniformly bounded away from zero in 𝑘 satisfying det 𝜕𝒙

𝑘

𝜕𝑿
≥ 𝛿0

for some 𝛿0 > 0, we have ‖ 𝑚(𝜌0)𝑚

(det 𝜕𝒙
𝜕𝑿

)𝑚+1
‖∞ ≤ 𝐶0

𝛿𝑚+10
, where 𝐶0 is a positive constant depending on 𝑚 and 𝜌0. Then the following estimates 

will be obtained:|||||||𝑚
⎛⎜⎜⎝

(𝜌0)𝑚

(det 𝜕𝒙
𝑘

𝜕𝑿
)𝑚+1

, (det 𝜕((𝑥− 𝑥𝑘), 𝑦𝑘)
𝜕(𝑋,𝑌 ) 

)2
⎞⎟⎟⎠
||||||| ≤

2𝐶0

𝛿𝑚+10

‖∇𝑿𝑦
𝑘‖2∞‖∇𝑿 (𝑥− 𝑥𝑘)‖2, (3.33)

|||||||𝑚
⎛⎜⎜⎝

(𝜌0)𝑚

(det 𝜕𝒙
𝑘

𝜕𝑿
)𝑚+1

, (det 𝜕(𝑥
𝑘, (𝑦− 𝑦𝑘))
𝜕(𝑋,𝑌 ) 

)2
⎞⎟⎟⎠
||||||| ≤

2𝐶0

𝛿𝑚+10

‖∇𝑿𝑥
𝑘‖2∞‖∇𝑿 (𝑦− 𝑦𝑘)‖2. (3.34)

Under these assumptions, the following energy dissipation law can be obtained.

Theorem 3.10. The solution to the explicit numerical scheme (3.26)-(3.27) with the regularization term 𝜖𝑘Δ𝑿 (𝒙𝑘+1 − 𝒙𝑘), 𝜖𝑘 ≥ 0 is the 
minimizer of the minimization problem (3.32). If either of the following conditions is true:

• 𝜖𝑘 = 0, choose suitable time step controlled by 𝛿𝑡≤ 𝜏min =
min𝜌0

𝑖𝑗
𝛿𝑚+10 ℎ2

2𝐶1𝐶0‖∇𝑿𝒙𝑘‖2∞ with ℎ= ℎ𝑥 = ℎ𝑦,

• choose suitable regularization parameter 𝜖𝑘 ≥ 𝐶0‖∇𝑿𝒙𝑘‖2∞
𝛿𝑚+10

,

then we have the following energy dissipation law:

�̄�ℎ(𝒙𝑘+1) ≤ �̄�ℎ(𝒙𝑘). (3.35)

Proof. Notice that 𝐿𝑘(𝒙𝑘+1) ≤𝐿𝑘(𝒙𝑘) = �̄�ℎ(𝒙𝑘), and

�̄�ℎ(𝒙𝑘+1) =�̄�ℎ(𝒙𝑘) + (
𝛿�̄�ℎ

𝛿𝒙
(𝒙𝑘),𝒙𝑘+1 − 𝒙𝑘) + 1

2
( 𝛿

2�̃�

𝛿𝒙2
((1 − 𝑡)𝒙𝑘 + 𝑡𝒙𝑘+1), (𝒙𝑘+1 − 𝒙𝑘)2)

≤�̄�ℎ(𝒙𝑘) + (
𝛿�̄�ℎ

𝛿𝒙
(𝒙𝑘),𝒙𝑘+1 − 𝒙𝑘) +

𝐶0

𝛿𝑚+10

‖∇𝑿𝒙
𝑘‖2∞‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2,

for 0 < 𝑡 < 1, then the energy dissipation law will be derived once we choose suitable 𝜖𝑘 and time step 𝛿𝑡 such that the following 
inequality holds:
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�̄�ℎ(𝒙𝑘) + (
𝛿�̄�ℎ

𝛿𝒙
(𝒙𝑘),𝒙𝑘+1 − 𝒙𝑘) +

𝐶0

𝛿𝑚+10

‖∇𝑿𝒙
𝑘‖2∞‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2 ≤𝐿𝑘(𝒙𝑘+1),

we only need to guarantee that

𝐶0

𝛿𝑚+10

‖∇𝑿𝒙
𝑘‖2∞‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2 ≤ 1 

2𝛿𝑡
∑
𝑖,𝑗

𝜌0
𝑖𝑗
|𝒙𝑘+1

𝑖𝑗
− 𝒙𝑘

𝑖𝑗
|2ℎ2 + 𝜖𝑘‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2.

In the case where 𝜖𝑘 = 0, using the inverse estimate, we have

𝐶0

𝛿𝑚+10

‖∇𝑿𝒙
𝑘‖2∞‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2 ≤ 𝐶1𝐶0‖∇𝑿𝒙

𝑘‖2∞
ℎ2𝛿𝑚+10

‖𝒙𝑘+1 − 𝒙𝑘‖2,
then the left hand side of above inequality will be controlled by 1 

2𝛿𝑡
∑

𝑖,𝑗 𝜌
0
𝑖𝑗
|𝒙𝑘+1

𝑖𝑗
− 𝒙𝑘

𝑖𝑗
|2ℎ2 once we choose suitable time step 𝛿𝑡 ≤

min𝜌0
𝑖𝑗
𝛿𝑚+10 ℎ2

2𝐶1𝐶0‖∇𝑿𝒙𝑘‖2∞ ∶= 𝜏min such that 𝐶1𝐶0‖∇𝑿𝒙𝑘‖2∞
𝛿𝑚+10 ℎ2

≤ min𝜌0
𝑖𝑗

2𝛿𝑡 . The energy dissipation law can be obtained.

In the other case where we choose suitable regularization parameter 𝜖𝑘 ≥ 𝐶0‖∇𝑿𝒙𝑘‖2∞
𝛿𝑚+10

such that 𝐶0
𝛿𝑚+10

‖∇𝑿𝒙
𝑘‖2∞‖∇𝑿 (𝒙𝑘+1 −𝒙𝑘)‖2 ≤

𝜖𝑘‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2, the desired energy dissipation law is derived. □

Remark 3.11. In the proof of Theorem 3.10, we assume that det 𝜕𝒙
𝜕𝑿

≥ 𝛿0 > 0 is away from zero. From determinant plots depicted by 
numerical experiments in Section 4.2, we observe that the determinant of the deformation gradient for the Porous-Medium equation 
with Barenblatt solution and Aggregation equation satisfies this assumption. However, for the Keller-Segel model, where the particles 
aggregate at the center or at the circumference under certain conditions, the positivity of the determinant will not be maintained with 
time, and eventually the trajectory will become distorted, and once this distortion occurs, the numerical experiment will be stopped. 
Such cases need to be further investigated.

Remark 3.12. Similarly, if we consider the minimization problem with the regularization term 𝜖𝑘𝛿𝑡‖∇𝑿𝒙
𝑘+1‖2, the energy dissipation 

law �̄�ℎ(𝒙𝑘+1)+ 𝜖𝑘𝛿𝑡‖∇𝑿𝒙
𝑘+1‖2 ≤ �̄�ℎ(𝒙𝑘)+ 𝜖𝑘𝛿𝑡‖∇𝑿𝒙

𝑘‖2 is derived if we choose suitable 𝜖𝑘 and 𝛿𝑡 such that the following inequality 
holds:

𝐶0

𝛿𝑚+10

‖∇𝑿𝒙
𝑘‖2∞‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2 ≤ 1 

2𝛿𝑡
∑
𝑖,𝑗

𝜌0
𝑖𝑗
|𝒙𝑖𝑗 − 𝒙𝑘

𝑖𝑗
|2ℎ2 + 𝜖𝑘𝛿𝑡‖∇𝑿𝒙

𝑘+1‖2.
In the case where we choose suitable regularization parameter 𝜖𝑘 to control the left hand side of above inequality by the regularization 
term, it can be roughly estimated that

𝜖𝑘 ≥ 1 
𝛿𝑡

𝐶0‖∇𝑿𝒙
𝑘‖2∞‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2

𝛿𝑚+10 ‖∇𝑿𝒙
𝑘+1‖2 =

𝐶0‖∇𝑿𝒙
𝑘‖2∞‖∇𝑿

𝒙𝑘+1−𝒙𝑘
𝛿𝑡 ‖2

𝛿𝑚+10 ‖∇𝑿𝒙
𝑘+1‖2 𝛿𝑡 ≥ 𝐶2𝛿𝑡.

Remark 3.13. It is worth noting that when we simulate numerical experiments using the explicit numerical scheme without regu-

larization term, the time step 𝛿𝑡 is supposed to be sufficient small to guarantee the stability of the numerical scheme. If we carry 
out numerical experiments with the regularization term 𝜖𝑘‖∇𝑿 (𝒙𝑘+1 − 𝒙𝑘)‖2, the regularization parameter should be taken appro-

priately through 𝜖𝑘 ≥ 𝐶0‖∇𝑿𝒙
𝑘‖2∞∕𝛿𝑚+10 to ensure the stability of the numerical scheme. The regularization term can also be taken 

as 𝜖𝑘𝛿𝑡‖∇𝑿𝒙
𝑘+1‖2 with 𝜖𝑘 ≥ 𝐶2𝛿𝑡, as displayed in the following numerical experiments.

4. Numerical simulations

In this section, numerical experiments for Porous-Medium equation, Fokker-Planck equation, Keller-Segel equation and Aggrega-

tion equation will be considered in one dimension and two dimension to validate the accuracy and stability of our proposed numerical 
schemes based on our flow dynamic approach.

4.1. One dimension

For simplicity, we shall first show numerical experiments for models in 1D, then we consider numerical simulations in 2D in next 
subsection.

4.1.1. Porous medium equation

The porous medium equation 𝜕𝑡𝜌 =Δ𝜌𝑚, 𝑚> 1, can be regarded as the Wasserstein gradient flow with energy defined by

𝐸(𝜌) = ∫
Ω 

1 
𝑚− 1

𝜌𝑚d𝑥.

Journal of Computational Physics 524 (2025) 113696 

15 



Q. Cheng, Q. Liu, W. Chen et al. 

Table 1
Convergence order of trajectory 𝑥 and density 𝜌 with 𝑚 = 2 at 𝑇 = 0.5.

M 𝛿𝑡 𝐿2
ℎ

error (𝑥) order 𝐿∞ error (𝑥) order 𝐿2
ℎ

error (𝜌) order 
100 1/100 4.0522e-04 2.3834e-04 3.6068e-04 
200 1/400 9.6283e-05 2.0734 5.6442e-05 2.0782 8.8534e-05 2.0624 
400 1/1600 2.3484e-05 2.0356 1.3746e-05 2.0377 2.2188e-05 1.9964 
800 1/6400 5.5614e-06 2.0781 3.2461e-06 2.0822 5.4442e-06 2.0270 

Fig. 3. The evolutions of energy and mass with respective to time under 𝑚= 2 with 𝑀 = 800, 𝛿𝑡= 1∕6400. 

Convergence test. Consider the following smooth initial value:

𝜌0(𝑥) = cos
(
𝜋𝑥

2 

)
, 𝑥 ∈ [−1,1], (4.1)

with Dirichlet boundary condition 𝑥|𝜕Ω =𝑋|𝜕Ω. The numerical solution is solved by using scheme (3.3)-(3.4) without regularization 
term. The reference solution is computed under very fine meshes with 𝑀 = 8000, 𝛿𝑡= 1∕64000. The convergence rates for density 𝜌
and trajectories 𝒙 in 𝐿2 and 𝐿∞ norms are shown in Table 1. We also depict the evolutions of energy and mass in Fig. 3 which show 
the property of energy dissipation and mass conserving with respective to time. 

Free boundaries. Considering the Barenblatt solution for Porous medium equation with free boundaries [43]:

𝐵𝑚(𝑥, 𝑡) = (𝑡+ 1)−𝑘
(
1 − 𝑘(𝑚− 1)

2𝑚 
|𝑥|2

(𝑡+ 1)2𝑘

)1∕(𝑚−1)

+
, (4.2)

where 𝑘 = (𝑚+ 1)−1. The support set of the solution is [𝑙𝑚(𝑡), 𝑟𝑚(𝑡)] with the moving interface 𝑟𝑚(𝑡) = −𝑙𝑚(𝑡) ∶=
√

2𝑚 
𝑘(𝑚−1) (𝑡+ 1)𝑘.

Using scheme (3.3)-(3.4) without regularization term to calculate the interior points, and (A.2)-(A.3) to compute the boundaries. 
We choose the Barenblatt solution 𝐵𝑚(𝑥,0) as the initial value to simulate the phenomenon of moving interface. The results are 
displayed in Fig. 4, it can be found that the free boundaries move with a finite speed, and the numerical propagation speed is 
consistent with the exact solution. The proposed scheme satisfies the property of energy dissipating, positivity-preserving and mass 
conserving for the density 𝜌.

Comparison between Eulerian and Lagrangian schemes. We add one example in Fig. 4 to compare numerical solutions between 
Eulerian and Lagrangian coordinates. We compute the Porous Medium equations in 1D by using the following fully implicit scheme

𝜌𝑛+1
𝑖

− 𝜌𝑛
𝑖

𝛿𝑡 
=

(𝜌𝑛+1
𝑖+1 )

𝑚 + (𝜌𝑛+1
𝑖−1 )

𝑚 − 2(𝜌𝑛+1
𝑖

)𝑚

𝛿𝑋2 . (4.3)

The computational domain is 𝑋 ∈ [−8,8]. For implementation, we use 𝑀 = 800 mesh points and time step 𝛿𝑡 = 1∕800. We compute 
the evolutions of density for Porous Medium equations in 1D in Fig. 4 (a-b), and the convergence results of scheme (4.3) are shown 
in Table 4.

From the following Fig. 4 (b), compared with numerical solutions in Eulerian coordinate, we observe that the right boundary of 
the moving interface can be computed more accurately for various times by using the Lagrangian scheme (3.3)-(3.4). In conclusion, 
for Porous Medium equations we find that the Lagrangian scheme (3.3)-(3.4) can capture the moving interface more accurately 
compared with the Eulerian scheme (4.3) from Fig. 4. 

Convergence results of the trajectory and Barenblatt solution with 𝑚 = 2 are shown in Table 2. The reference solution of trajectory 
is obtained on refine meshes, i.e. 𝑀 = 8000, 𝛿𝑡 = 1∕64000. The Barenblatt solution 𝐵𝑚(𝑥,0.5) is taken as the exact solution to test 
the convergence rate for density 𝜌. It is observed in Table 2 and Table 3 that the convergence rates in time remain to be second order 
with 𝑚 = 2, and we can not achieve optimal convergence rate when we take 𝑚 = 2.5 due to limitation of regularity for density 𝜌. We 
also observe that the errors for density 𝜌 at 𝑥 = 0 away from the boundaries remains to be second order convergence rate when we 
take 𝑚 = 2.5.
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Fig. 4. The evolutions of density, energy and mass for the Barenblatt solution solved by the Lagrangian scheme (3.3)-(3.4) with 𝑀 = 800, 𝛿𝑡= 1∕6400. The numerical 
solutions in Eulerian coordinate are solved by the fully implicit scheme: 𝜌

𝑛+1
𝑖

−𝜌𝑛
𝑖

𝛿𝑡 = (𝜌𝑛+1
𝑖+1 )

𝑚+(𝜌𝑛+1
𝑖−1 )

𝑚−2(𝜌𝑛+1
𝑖

)𝑚

𝛿𝑋2 with 𝑀 = 800, 𝛿𝑡= 1∕800.

Table 2
Convergence order of trajectory 𝑥 and density 𝜌 with 𝐵𝑚(𝑥,𝑇 ) at 𝑇 = 0.5, 𝑚 = 2.

M 𝛿𝑡 𝐿2
ℎ

error (𝑥) order 𝐿∞ error (𝑥) order 𝐿2
ℎ

error (𝜌) order runtime (s) 
100 1/100 0.0014 8.3240e-04 5.5360e-04 0.0340 
200 1/400 3.4387e-04 2.0315 1.8335e-04 2.1827 1.3922e-04 1.9915 0.0681 
400 1/1600 8.3217e-05 2.0496 4.4631e-05 2.0385 3.4935e-05 1.9946 0.4879 
800 1/6400 1.8721e-05 2.1522 1.0040e-05 2.1523 8.7565e-06 1.9963 2.6089 

Table 3
Convergence order of trajectory 𝑥 and density 𝜌 with 𝐵𝑚(𝑥,𝑇 ) at 𝑇 = 0.5, 𝑚 = 2.5.

M 𝛿𝑡 𝐿2
ℎ

error (𝑥) order 𝐿2
ℎ

error (𝜌) order error (0) order 
100 1/100 0.0011 8.0390e-04 2.2763e-04 
200 1/400 3.7503e-04 1.5509 3.6544e-04 1.1374 5.7061e-05 1.9961 
400 1/1600 1.5814e-04 1.2458 1.8045e-04 1.0181 1.4262e-05 2.0003 
800 1/6400 6.5878e-05 1.2634 8.7376e-05 1.0463 3.5611e-06 2.0017 
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Table 4
Convergence order of density 𝜌 solved by scheme (4.3) with 𝐵𝑚(𝑥,𝑇 )
at 𝑇 = 0.5, 𝑚= 2.

M 𝛿𝑡 𝐿2
Euler

error (𝜌) order runtime (s) 
100 1/100 0.0106 0.0193 
200 1/400 0.0027 1.9893 0.0566 
400 1/1600 6.6560e-04 1.9977 0.3178 
800 1/6400 1.7630e-04 1.9166 2.0652 
1600 1/25600 4.2717e-05 2.0451 16.9118 

Fig. 5. Density plots for the initial value (4.4) with 𝑚 = 2, 𝜃 = 0.25, 𝑀 = 800, 𝛿𝑡= 1∕800. 

Notice that we use the same number of spatial points as the proposed Lagrangian scheme to solve the Eulerian scheme (4.3) in 
computational domain 𝑋 ∈ [−5,5] with 𝑚 = 2 and 𝑇 = 0.5. We take the exact solution to be 𝐵2(𝑥,0.5). The convergence results and 
computational CPU times of the Eulerian scheme (4.3) are shown in Table 4. We also show the CPU time in Table 2 by using the 
proposed Lagrangian scheme. We run the Eulerian scheme (4.3) and Lagrangian scheme (3.3)-(3.4) in MATLAB on a laptop with 
2.2 GHz Inter(R) Core(TM) i9-14900HX and 32 GB of RAM. We observe from Table 2 and Table 4 that to obtain the same accuracy 
in 𝐿2 the Lagrangian method (3.3)-(3.4) requires fewer spatial points than the full-Implicit Eulerian method (4.3) from the CPU 
time. We can also observe that the Lagrangian scheme (3.3)-(3.4) achieves better accuracy than Eulerian acheme (4.3) with the same 
spatial points.

Waiting time. It is known that solutions to the porous medium equation may show the phenomenon of waiting time. This 
phenomenon indicates that the support set of solutions will not expand during a positive time 𝑡∗ , after which, it will start moving at 
a finite speed. 𝑡∗ is called the waiting time.

To be specific, the propagation speed at the boundary for the porous medium equation can be calculated by [18,19]

𝜕𝑡𝑥 = − 𝑚 
𝑚− 1

𝜕𝑋 (𝜌(𝑋,0))𝑚−1

(𝜕𝑋𝑥)𝑚
.

The numerical waiting time can be calculated as the first instance such that 𝜕𝑡𝑥 ≠ 0 as stated in [18,19]. Considering the following 
initial value:

𝜌0(𝑥) =
(
𝑚− 1
𝑚 

(
(1 − 𝜃) sin2(𝑥) + 𝜃 sin4(𝑥)

))1∕(𝑚−1)
, 𝑥 ∈ [−𝜋,0], (4.4)

where 𝜃 ∈ [0,0.25]. For the initial value (4.4), 𝑚 = 2 and 𝜃 = 0.25, we use scheme (3.3)-(3.4) without regularization term to calculate 
the interior points, and use (A.2)-(A.3) to calculate the boundaries, the numerical results are displayed in Fig. 5, the free boundaries 
remain to be static during 0 < 𝑡 ≤ 0.22. After the moment 𝑡 = 0.22, the free boundaries begin to move at a finite speed. 

The waiting time for the initial value (4.4) is given theoretically in [3] by 𝑡𝑤,𝑒 ∶=
1 

2(𝑚+1)(1−𝜃) . Now, by using scheme (3.3)-(3.4)

without regularization term to calculate the interior points and (A.2)-(A.3) to compute the boundaries, we calculate the waiting time 
numerically with different 𝜃 and 𝑚 to compare the numerical waiting time with the exact formulation, the results are shown in Fig. 6, 
it can be observed that the tendency of the numerical waiting time is consistent with the theoretical result, and it will converge to 
the exact waiting time when we reduce time steps, as displayed in Table 5. 
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Fig. 6. Influence of the parameter 𝜃 and 𝑚 with different 𝛿𝑡 and 𝑀 = 1∕𝛿𝑡. 

Table 5
Convergence order of the waiting time with the initial value 
(4.4), 𝑚 = 2, 𝜃 = 0.25, the exact waiting time is 𝑡𝑤,𝑒 =

1 
2(𝑚+1)(1−𝜃)

= 2
9
.

M 𝛿𝑡 𝑡𝑤,ℎ |𝑡𝑤,ℎ − 𝑡𝑤,𝑒| order 
1000 1/1000 0.2240 0.0018 
2000 1/2000 0.2235 0.0013 0.4695 
4000 1/4000 0.2233 0.0011 0.2410 
8000 1/8000 0.2229 0.0007 0.6521 

4.1.2. Fokker-Planck equation

In this subsection, we will discuss the Fokker-Planck equation with different potentials by choosing various 𝑈 (𝜌), 𝑉 (𝑥) and taking 
𝑊 (𝑥) = 0.

Nonlinear Fokker-Planck equation. For the nonlinear Fokker-Planck equation, 𝑈 (𝜌) is taken to be 1 
𝑚−1𝜌

𝑚, and 𝑉 (𝑥) will be 
taken as one-well and double-well potential, respectively. If 𝑉 (𝑥) is a confining drift potential, all solutions will approach to a unique 
steady state which is formulated as, see [9,12,15]

𝜌∞(𝑥) =
(
𝐶𝑓𝑝 −

𝑚− 1
𝑚 

𝑉 (𝑥)
) 1 

𝑚−1

+
, (4.5)

where 𝐶𝑓𝑝 > 0 is determined by the mass of initial value such that ∫Ω 𝜌0(𝑥)d𝑥 = ∫Ω 𝜌∞(𝑥)d𝑥. In the following, one-well potential 
𝑉 (𝑥) = |𝑥|2

2 and double-well potential 𝑉 (𝑥) = |𝑥|4
4 − |𝑥|2

2 will be considered.

One well. Taking 𝑉 (𝑥) = |𝑥|2
2 , we consider the following energy with one-well potential:

𝐸(𝜌) = ∫
Ω 

1 
𝑚− 1

𝜌𝑚 + |𝑥|2
2 

𝜌 d𝑥.

Consider 𝑚 = 2 and the initial value to be

𝜌0(𝑥) = max{1 − |𝑥|,0}. (4.6)

In this case, the stationary solution 𝜌∞ is given in [18], formulated as

𝜌∞ =max

{(3
8

) 2
3 − 𝑥2

4 
,0

}
, (4.7)

where ( 38 )
2
3 is determined by the mass conservative property, such that ∫Ω 𝜌∞d𝑥 = ∫Ω 𝜌0d𝑥. The relative energy is defined by 𝐸(𝑡) =

𝐸(𝑡|∞)∕𝐸(0|∞) with 𝐸(𝑡|∞) =𝐸(𝑡) −𝐸(∞).
Using scheme (3.3)-(3.4) and enforcing the free boundary (A.4) without regularization term to solve the Fokker-Planck model, 

the numerical results are displayed in Fig. 7. As time increases, the profile of density converges to the steady state when time goes 
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Fig. 7. Fokker-Planck equation with the one-well potential, 𝑚 = 2, 𝑀 = 800, 𝛿𝑡= 1∕800. 

to 𝑇 = 10. The convergence rate for the density is computed at the stationary time 𝑇 = 10. It can be observed that the convergence 
rates of 𝐿2 error and error at 𝑥 = 0 are second-order. The proposed scheme is mass-conserving, and is also energy dissipative in time. 
As shown in diagram (d) in Fig. 7, the scaling law of the relative energy is about 𝑒−6𝑡 . 

Double well. Taking 𝑉 (𝑥) = |𝑥|4
4 − |𝑥|2

2 , we consider the following energy with double-well potential:

𝐸(𝜌) = ∫
Ω 

1 
𝑚− 1

𝜌𝑚 +
(|𝑥|4

4 
− |𝑥|2

2 

)
𝜌 d𝑥.

Let 𝑚 = 2, choosing the following initial value with 𝜎 = 1:

𝜌0(𝑥) = (𝑥2 + 10−6𝑒−
𝑥2

2𝜎2 )(1 − 𝑥2), 𝑥 ∈ [−1,1]. (4.8)

Now, we implement numerical simulations with initial value (4.8) by using scheme (3.3)-(3.4) and (A.4) without regularization 
term, where the potential is taken as 𝑉 (𝑥) = |𝑥|4

4 − |𝑥|2
2 and 𝑉 (𝑥) = |𝑥|2

2 , respectively, the results are shown in Fig. 8. When the 

numerical solution is computed with double-well potential 𝑉 (𝑥) = |𝑥|4
4 − |𝑥|2

2 , the stationary state will also be double-well. If the 

potential is set to be one-well 𝑉 (𝑥) = |𝑥|2
2 , the stationary state will also be one-well. 

If we take the following one-well value as the initial condition:

𝜌0(𝑥) = 1 − 𝑥2, 𝑥 ∈ [−1,1], (4.9)
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Fig. 8. Double-well initial problem for the Fokker-Planck equation with the one-well potential and the double-well potential, 𝑚 = 2, 𝑀 = 800, 𝛿𝑡= 1∕800. 

Fig. 9. One-well initial value for the Fokker-Planck equation with the double-well potential, 𝑚 = 2, 𝑀 = 800, 𝛿𝑡= 1∕800. 

Fig. 10. One-well initial value for the Fokker-Planck equation with logarithmic potential, 𝑀 = 800, 𝛿𝑡= 1∕800. 

and calculate the numerical solution with the double-well potential, it will also converge to a double-well stationary state, as displayed 
in Fig. 9. 

Linear Fokker-Planck equation with the logarithmic potential. Now, we consider the linear Fokker-Planck equation, i.e. taking 
𝑈 (𝜌) = 𝜌 log𝜌. Consider the following energy with one-well logarithmic potential:

𝐸(𝜌) = ∫
Ω 

𝜌 log𝜌+ |𝑥|2
2 

𝜌 d𝑥.

Numerical experiments are implemented by using scheme (3.3)-(3.4) without regularization term, and the following initial condition 
is considered:

𝜌0(𝑥) =
𝐶𝑔√
2𝜋

𝑒−𝑥
2∕𝜎, 𝑥 ∈ [−5,5], (4.10)

with 𝐶𝑔 = 𝜎 = 1. The results shown in Fig. 10 imply that numerical solution will converge to a one-well stationary state, and the 
curve of energy is dissipative with respective to time. 
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Fig. 11. Aggregation equation solved by (3.3)-(3.4) with the regularization term 𝜖Δ𝑋𝑥
𝑘+1 , the last term of (3.3) is defined by (A.6). The initial value (4.10), 𝐶𝑔 = 𝜎 = 1, 

𝑁 = 200, 𝛿𝑡= 1∕200.

4.1.3. Aggregation equation

Considering the aggregation equation with the energy defined by

𝐸(𝜌) = ∫
Ω×Ω

𝑊 (𝑥− 𝑦)𝜌(𝑥)𝜌(𝑦)d𝑥d𝑦,

with 𝑊 (𝑥) = |𝑥|2
2 − ln |𝑥|. We show that taking variational of 𝐸(𝜌(𝑥)) with respect to 𝑥 leads to the following equations in Eulerian 

coordinate:

𝛿𝐸

𝛿𝑥 
=𝜌∇𝑥𝐹

′(𝜌) = 𝜌∇𝑥

⎛⎜⎜⎝∫Ω 
𝑊 (𝑥− 𝑦)𝜌(𝑦)d𝑦

⎞⎟⎟⎠ = 𝜌∫
Ω 

𝑊 ′(𝑥− 𝑦)𝜌(𝑦)d𝑦,

and in Lagrangian coordinate:

𝛿𝐸

𝛿𝑥 
= 𝜌(𝑋,0)∫

Ω 
𝑊 ′(𝑥− 𝑦)𝜌(𝑦)d𝑦.

Let’s set 𝑥 to be implicit and 𝑦 to be explicit, details can be reached in Appendix. Taking the initial value (4.10) with 𝐶𝑔 = 𝜎 = 1, 
we apply scheme (3.3)-(3.4), incorporating the regularization term 𝜖Δ𝑋𝑥

𝑘+1, and define the last term of (3.3) as provided in (A.6), to 
simulate the numerical experiments. The density plot at 𝑡 = 10 and energy plot with different regularization parameter 𝜖 are shown 
in Fig. 11. It can be observed that the density achieves the equilibrium state [11]

𝜌∞ =
𝐶𝑎𝑔

𝜋

√
(2 − 𝑥2)+, (4.11)

as 𝜖 decreases, where 𝐶𝑎𝑔 = 1∕
√
2 is determined by the property of mass conservation.

Now we use scheme (3.3)-(3.4) with the regularization term 𝜖Δ𝑋𝑥
𝑘+1, 𝜖 = 10−4𝛿𝑡 to make numerical experiments by choosing 

the initial value (4.10) with 𝜎 = 𝐶𝑔 = 1. As shown in Fig. 12, the solution will converge to the equilibrium state. If we take the initial 
value (4.10) with 𝜎 = 0.1, 𝐶𝑔 = 1, it will converge to 𝜌∞ (4.11) with 𝐶𝑎𝑔 =

√
0.1∕2 where the numerical results are displayed in 

Fig. 13. Both results indicate that the numerical solution will converge to a stationary state which is consistent with the theoretical 
result, and the proposed scheme is mass conserving and energy dissipating. As shown in diagram (d) in Fig. 12 and Fig. 13, the scaling 
law of the relative energy is also verified with theoretical results.

For the fully explicit numerical scheme, the corresponding modified discrete energy can be taken by �̂�𝑘+1
ℎ

=
∑𝑁−1

𝑗=0
𝛿𝐸ℎ

𝛿𝑥𝑗
(𝒙𝑘)(𝑥𝑘+1

𝑗
−

𝑥𝑘
𝑗
) +𝐸ℎ(𝒙𝑘), then the last term in the numerical scheme (3.3) will be taken as 𝛿𝐸ℎ

𝛿𝑥𝑗
(𝒙𝑘). Now we make the numerical experiments by 

using (3.3)-(3.4) with the regularization term 𝜖Δ𝑋𝑥
𝑘+1, 𝜖 = 10−2𝛿𝑡 where numerical results are shown in Fig. 14. It can be observed 

that the numerical solution also converges to stationary state, and the total mass is preserved well. 
If we set 𝑥 to be explicit and 𝑦 to be implicit in the numerical scheme, details can be found in Appendix. We use scheme (3.3)-(3.4), 

in which the last term is adjusted according to (A.7), and the regularization term 𝜖Δ𝑋𝑥
𝑘+1, 𝜖 = 10−4𝛿𝑡 to conduct numerical exper-
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Fig. 12. Aggregation equation solved by (3.3)-(3.4) with the last term defined by (A.6), the regularization term 𝜖Δ𝑋𝑥
𝑘+1 , 𝜖 = 10−4𝛿𝑡. The initial value (4.10), 𝐶𝑔 = 𝜎 = 1, 

𝑁 = 200, 𝛿𝑡= 1∕200.

iments, the numerical results can be found in Fig. 15 which show that the scheme preserves total mass, and the numerical solution 
will converge to its stationary state. The energy is also dissipative with 𝐸ℎ(𝒙𝑘+1) defined by (A.5) in Appendix. 

We set 𝑥 and 𝑦 both implicit in numerical scheme (3.3)-(3.4), and implement numerical experiments by using scheme (3.3)-(3.4)

with the last term defined by (A.8), and the regularization term 𝜖Δ𝑋𝑥
𝑘+1, 𝜖 = 10−2𝛿𝑡, the numerical results are displayed in Fig. 16

which implies that the proposed numerical scheme is also stable with 𝐸ℎ(𝒙𝑘+1) defined by (A.5) in Appendix. 

4.1.4. Keller-Segel model

Consider the Keller-Segel model [24] with the following energy:

𝐸(𝜌) = ∫
Ω 

𝑈 (𝜌(𝑥)) + 𝜌𝑉 (𝑥)d𝑥+ ∫
Ω×Ω

𝑊 (𝑥− 𝑦)𝜌(𝑥)𝜌(𝑦)d𝑥d𝑦,

where 𝑈 = 𝜌 log𝜌, 𝑉 (𝑥) = 0 and 𝑊 (𝑥) = 1 
2𝜋 ln |𝑥|. Taking variational derivative with respective to 𝑥, we have

𝛿𝐸

𝛿𝑥 
=𝜌∇𝑥𝑈

′(𝜌(𝑥)) + 𝜌∫
Ω 

𝑊 ′(𝑥− 𝑦)𝜌(𝑦)d𝑦. (4.12)

Rewriting (4.12) into Lagrangian coordinate:
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Fig. 13. Aggregation equation solved by (3.3)-(3.4) with the last term defined by (A.6), the regularization term 𝜖Δ𝑋𝑥
𝑘+1 , 𝜖 = 10−4𝛿𝑡. The initial value (4.10), 𝐶𝑔 = 1, 

𝜎 = 0.1, 𝑁 = 200, 𝛿𝑡= 1∕200.

Fig. 14. Aggregation equation solved by fully explicit scheme with the regularization term 𝜖Δ𝑋𝑥
𝑘+1 , 𝜖 = 10−2𝛿𝑡, the initial value is taken as (4.10) with 𝐶𝑔 = 𝜎 = 1, 

𝑀 = 200, 𝛿𝑡= 1∕200.
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Fig. 15. Aggregation equation solved by (3.3)-(3.4) with the last term modified by (A.7), the regularization term 𝜖Δ𝑋𝑥
𝑘+1 , 𝜖 = 10−4𝛿𝑡. The initial value (4.10), 

𝐶𝑔 = 𝜎 = 1, 𝑁 = 200, 𝛿𝑡= 1∕200.

Fig. 16. Aggregation equation solved by (3.3)-(3.4) with the last term defined by (A.8), the regularization term 𝜖Δ𝑋𝑥
𝑘+1 , 𝜖 = 10−2𝛿𝑡. The initial value (4.10), 𝐶𝑔 = 𝜎 = 1, 

𝑀 = 200, 𝛿𝑡= 1∕200.

𝛿𝐸

𝛿𝑥 
= 𝜌(𝑋,0)

⎛⎜⎜⎝
𝜕𝑋𝑈

′( 𝜌(𝑋,0)
𝜕𝑋𝑥 )

𝜕𝑋𝑥 
+ ∫

Ω 
𝑊 ′(𝑥− 𝑦)𝜌(𝑌 ,0)d𝑌

⎞⎟⎟⎠ . (4.13)

Consider the following initial value with one well:

𝜌0(𝑥) =
𝐶𝑘𝑠√
2𝜋

𝑒−𝑥
2∕2 + 10−8, 𝑥 ∈ [−15,15], (4.14)

and the initial condition with double well:

𝜌0(𝑥) =
𝐶𝑘𝑠√
𝜋
(𝑒−4(𝑥+2)2 + 𝑒−4(𝑥−2)

2 ) + 10−8, 𝑥 ∈ [−15,15], (4.15)

combined with the Dirichlet boundary condition 𝑥|𝜕Ω =𝑋|𝜕Ω. We simulate numerical experiments by using scheme (3.3)-(3.4) with-

out regularization term, and the last term of (3.3) defined by (A.9).

Taking 𝐶𝑘𝑠 = 1 in (4.14) and (4.15) to implement numerical experiments, respectively. As shown in Fig. 17 and Fig. 18, it can 
be observed that numerical solutions remain to be positivity and bounded for all time. If we choose 𝐶𝑘𝑠 = 5𝜋 to make numerical 
simulations, solutions also remain to be positivity. Finally, we observe that numerical solutions blow up in finite time shown in 
Fig. 17 and Fig. 18. 

4.2. Two dimension

In this subsection, we focus on numerical simulations in 2D. For simplicity, to avoid solving nonlinear equations, we only validate 
the accuracy and efficiency for explicit numerical schemes (3.26)-(3.27) proposed in Section 3.2. We also take the Porous-Medium 
equation, Keller-Segel equation and Aggregation equation as examples.

4.2.1. Porous-medium equation

The 2-D Barenblatt solution takes on the following form:

𝐵𝑚,2(𝒙, 𝑡) =
(
𝐶𝐵2 −

𝜅(𝑚− 1)
4𝑚 

|𝒙|2
(𝑡+ 1)𝜅

)1∕(𝑚−1)

+
, (4.16)
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Fig. 17. Keller-Segel model solved by (3.3)-(3.4) without regularization term, the last term of (3.3) is defined by (A.9). The initial value (4.14) with 𝐶𝑘𝑠 = 1 and 5𝜋, 
𝑀 = 800, 𝛿𝑡= 1∕800.

Fig. 18. Keller-Segel model solved by (3.3)-(3.4) without regularization term, the last term of (3.3) is defined by (A.9). The double-well initial value (4.15), 𝐶𝑘𝑠 = 1
and 5𝜋, 𝑀 = 800, 𝛿𝑡= 1∕800.

where 𝜅 = 1∕𝑚, and 𝐶𝐵2 is a positive constant. The solution has a compact support |𝒙| ≤ 𝜉𝑚(𝑡) for any finite time with

𝜉𝑚(𝑡) =

√
4𝑚𝐶𝐵2
𝜅(𝑚− 1)

(𝑡+ 1)𝜅∕2. (4.17)

Now, we take the Barenblatt solution with 𝐶𝐵2 = 0.1 as initial condition to make numerical experiments by using scheme (3.26)-(3.27)

with the regularization term 𝜖Δ𝑿𝒙
𝑘+1, 𝜖 = 10−3𝛿𝑡 for 𝑚 = 2, 𝜖 = 10−1𝛿𝑡 for 𝑚 = 5. The evolution of the numerical solution is shown in 

Fig. 19 and Fig. 21 for 𝑚 = 2, 𝑚 = 5, respectively, it can be found that the profile of density changes as the trajectory moves outward, 
and the free boundaries move at a finite speed. The plots of the absolute error between the numerical solution and the exact solution 
are also displayed, it can be observed that the main part of the error is around the free boundaries.

The trajectories at various times are shown in Fig. 20 and Fig. 22 for 𝑚 = 2 and 𝑚 = 5, respectively, which implies that the tendency 
of the numerical interface is consistent with the exact one calculated by (4.17). 

The energy curves are shown in Fig. 23 which indicates that the energy dissipation law holds in both cases where 𝑚 = 2 and 
𝑚 = 5. Fig. 24 illustrates the minimum and maximum determinant values for both 𝑚 = 2 and 𝑚 = 5 with various regularization 
terms, respectively. It is evident from the plots that the determinant value maintains its positivity. Further, a positive distance can be 
observed between the minimum value and zero. The convergence order of the numerical solution with the exact solution 𝐵𝑚,2(𝒙,0.1), 
𝑚 = 2 and 𝑚 = 2.5 are shown in Table 6.
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Fig. 19. Numerical solution solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 10−3𝛿𝑡, the initial value is Barenblatt solution with 𝐶𝐵2 = 0.1, 𝑚 = 2, 

𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡= 0.01.

Fig. 20. Trajectories solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 10−3𝛿𝑡, the initial value is Barenblatt solution with 𝐶𝐵2 = 0.1, 𝑚 = 2, 𝑀𝑥 =

𝑀𝑦 = 64, 𝛿𝑡= 0.01. The blue line represents the exact interface of the support set calculated by (4.17).

Journal of Computational Physics 524 (2025) 113696 

27 



Q. Cheng, Q. Liu, W. Chen et al. 

Fig. 21. Numerical solution solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 10−1𝛿𝑡, the initial value is Barenblatt solution with 𝐶𝐵2 = 0.1, 𝑚 = 5, 

𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡= 0.01.

Fig. 22. Trajectories solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 10−1𝛿𝑡, the initial value is Barenblatt solution with 𝐶𝐵2 = 0.1, 𝑚 = 5, 𝑀𝑥 =

𝑀𝑦 = 64, 𝛿𝑡= 0.01. The blue line represents the exact interface of the support set calculated by (4.17).
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Fig. 23. Energy solved by (3.26)-(3.27) with different regularization terms. Set 𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡= 0.01, the initial value is Barenblatt solution with 𝐶𝐵2 = 0.1, 𝑚= 2, 
𝑚 = 5. The blue solid lines: 𝜖Δ𝑿𝒙

𝑘+1 , 𝜖 = ℎ2
𝑥
. The red dashed lines: 𝜖𝑘Δ𝑿 (𝒙𝑘+1 − 𝒙𝑘), 𝜖𝑘 = 0.1.

Fig. 24. Determinant values solved by (3.26)-(3.27) with different regularization terms. Set 𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡 = 0.01, the initial value is Barenblatt solution with 
𝐶𝐵2 = 0.1, 𝑚= 2, 𝑚 = 5. The blue lines: 𝜖Δ𝑿𝒙

𝑘+1 , 𝜖 = ℎ2
𝑥
. The red lines: 𝜖𝑘Δ𝑿 (𝒙𝑘+1 − 𝒙𝑘), 𝜖𝑘 = 0.1.

Table 6
Convergence order with 𝐵𝑚,2(𝒙,0.1), 𝐶𝐵2 = 0.1, 𝑚= 2 and 𝑚 = 2.5 in [−2,2]×
[−2,2]. Numerical solutions are solved by (3.26)-(3.27) with regularization 
term 𝜖Δ𝑿𝒙

𝑘+1 , 𝜖 = ℎ2
𝑥
.

𝑚 = 2 𝑚 = 2.5

𝑀𝑥 ×𝑀𝑦 𝑁𝑡 𝐿2
ℎ

error (𝜌) order 𝐿2
ℎ

error (𝜌) order 
16x16 16 0.0029 0.0054 
32x32 32 0.0014 1.0506 0.0026 1.0544 
64x64 64 7.5117e-04 0.8982 0.0014 0.8931 
128x128 128 3.6211e-04 1.0527 6.5371e-04 1.0987 
256x256 256 1.7947e-04 1.0127 3.0605e-04 1.0949 
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Fig. 25. Numerical solution solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 0.1𝛿𝑡, 𝑚 = 3, the initial value (4.18) in [−1.5,1.5] × [−1.5,1.5], 

𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡= 0.001.

Non-radial problem. Consider the following initial value:

𝜌0(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩

25(0.252 − (
√
𝑥2 + 𝑦2 − 0.75)2)

3
2 , 

√
𝑥2 + 𝑦2 ∈ [0.5,1] and (𝑥 < 0 or 𝑦 < 0),

25(0.252 − 𝑥2 − (𝑦− 0.75)2)
3
2 , 𝑥2 + (𝑦− 0.75)2 ≤ 0.252 and 𝑥 ≥ 0,

25(0.252 − (𝑥− 0.75)2 − 𝑦2)
3
2 , (𝑥− 0.75)2 + 𝑦2 ≤ 0.252 and 𝑦 ≥ 0,

0, otherwise,

(4.18)

which has a partial donut-shaped support [29]. Let’s set 𝑚 = 3, 𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡 = 0.001, and use scheme (3.26)-(3.27) with the 
regularization term 𝜖Δ𝑿𝒙

𝑘+1, 𝜖 = 0.1𝛿𝑡 to implement the numerical experiments, numerical results are shown in Fig. 25, where the 
evolution of the trajectories can be found. We can observe that the scheme (3.26)-(3.27) handles this situation well. However, it 
should be noted that this approach cannot handle topological changes automatically, which serves as a limitation of our method.

Now we take the initial value as

𝜌0(𝑥, 𝑦) = 𝑒−20((𝑥−0.5)
2+(𝑦−0.5)2), 𝑥 ∈ [−2,2] × [−2,2]. (4.19)

Let’s set 𝑚 = 2, 𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡 = 0.01, and use scheme (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1, 𝜖 = 0.1𝛿𝑡 to simulate 

the numerical experiments, results are shown in Fig. 26. It can be found that the proposed scheme (3.26)-(3.27) can handle the 
nonradial case well.

4.2.2. Aggregation equation

Consider the following aggregation equation:

𝜕𝑡𝜌 =∇ ⋅ (𝜌∇𝑊 ∗ 𝜌), 𝑊 ∶ℝ2 →ℝ. (4.20)

We simulate the evolution of solutions to (4.20) with

𝑊 (𝒙) = |𝒙|2
2 

− ln |𝒙|,
and the initial value

𝜌0(𝑥, 𝑦) = 𝐶2𝑑𝑒
−𝑥2−𝑦2 , (4.21)
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Fig. 26. Numerical solution solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 0.1𝛿𝑡, 𝑚= 2, the initial value (4.19) in [−2,2] × [−2,2], 𝑀𝑥 =𝑀𝑦 = 64, 

𝛿𝑡 = 0.01.

Fig. 27. Aggregation equation solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 0.1𝛿𝑡, the initial value (4.21) in [−2,2] × [−2,2], 𝑀𝑥 =𝑀𝑦 = 64, 

𝛿𝑡 = 0.01.

in [−2,2] × [−2,2], 𝐶2𝑑 = 1, 𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡 = 0.01. Using scheme (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙𝑘+1, 𝜖 = 0.1𝛿𝑡
to simulate the numerical experiments, the numerical solution and trajectory plots at 𝑡 = 1 are shown in Fig. 27. The blue line in 
the trajectory plot represents the unit circle. As can be observed the solution converges to a characteristic function on the disk of 
radius 1, centered at (0,0), recovering analytic results on solutions of the aggregation equation with Newtonian repulsion [9,22,28]. 
Moreover, the determinant value plot is also presented in Fig. 27, we find that despite the minimum value diminishing over time, the 
distance between the minimum and zero remains positive as the density tends to a steady state.

4.2.3. Aggregation diffusion equation

Now we simulate several examples of aggregation-diffusion equation:

𝜕𝑡𝜌 =∇ ⋅ (𝜌∇𝑊 ∗ 𝜌) + 𝜈Δ𝜌𝑚, 𝑊 ∶ℝ2 →ℝ, 𝑚 ≥ 1. (4.22)

For the aggregation diffusion equation (4.22), we take 𝑊 (𝒙) = − 1 
𝜋
𝑒−|𝒙|2 , 𝑚 = 3 and 𝜈 = 0.1. The initial value is taken as

𝜌0(𝑥, 𝑦) =
1
2
𝜒|𝑥|≤2.5,|𝑦|≤2.5(𝑥, 𝑦). (4.23)
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Fig. 28. Evolution of the numerical solution for the aggregation diffusion equation solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 0.1𝛿𝑡, initial 

value (4.23) in [−3,3] × [−3,3], 𝑚= 3, 𝜈 = 0.1, 𝑀𝑥 =𝑀𝑦 = 32, 𝛿𝑡= 0.01.

Fig. 29. Trajectory and determinant value for the aggregation diffusion equation solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 𝛿𝑡, initial value 

(4.23) in [−3,3] × [−3,3], 𝑚 = 3, 𝜈 = 0.1, 𝑀𝑥 =𝑀𝑦 = 32, 𝛿𝑡= 0.01.

Using scheme (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙𝑘+1, 𝜖 = 0.1𝛿𝑡 to carry out numerical experiments, the evolution of 
density can be found in Fig. 28, the solution tends to form four bumps at the four angles at the beginning, and finally approaches 
a single bump equilibrium [8,9]. The trajectory and determinant value plots are depicted in Fig. 29, which implies that there is no 
distortion or swap during the evolution of the solution, and that the minimum value of the determinant is lower bounded away from 
zero.

We also simulate the evolution of the solution for the Keller-Segel equation, which is the aggregation-diffusion equation (4.22)

with the kernel 𝑊 (𝒙) = 1 
2𝜋 ln(|𝒙|) for 𝜈 = 1, 𝑚 = 1 and 𝑚 = 2, the global existence and blow-up of solutions are displayed. Taking the 
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Fig. 30. Keller-Segel model solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 0.1𝛿𝑡, initial value (4.21), 𝑚 = 1, 𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡= 0.001. 

initial value (4.21), and the constant 𝐶2𝑑 will be chosen as 1 and 20 in the following numerical experiments. The numerical solution 
is solved by scheme (3.26)-(3.27) with regularization term 𝜖Δ𝑿𝒙

𝑘+1, 𝜖 = 0.1𝛿𝑡.
For the case when 𝑚 = 1, the numerical solution can be found in Fig. 30. The solution decays to zero as time increases, given 

𝐶2𝑑 = 1. Conversely, when 𝐶2𝑑 = 20, the solution becomes sharply peaked at the origin, which can be regarded as the blow-up 
phenomenon. As for the case when 𝑚 = 2, we can observe from Fig. 31 that the solution converges to a stable state denoted by 
a single bump, provided 𝐶2𝑑 = 20. Fig. 32 illustrates the determinant value plots for 𝑚 = 1 and 𝑚 = 2. It can be noticed that the 
determinant values remain positive for the given time. However, since the particles are clustered at the center for 𝑚 = 1 and at the 
circumference for 𝑚 = 2, the particle trajectories will actually be distorted or exchanged as time increases, and the positive value of 
the determinant will not always be maintained.

5. Concluding remarks

We constructed in this paper new numerical schemes for the Wasserstein gradient flows using a flow dynamic approach based on 
the Benamou-Bernier formula. We showed that the new schemes preserve essential structures of the Wasserstein gradient flows. More 
precisely, the fully discrete schemes are shown to be positivity-preserving, mass conservative and energy dissipative. Moreover, it is 
shown that the schemes are uniquely solvable in the one dimensional case.

We presented ample numerical experiments to show that the proposed schemes are indeed positivity preserving, mass conservative 
and energy stable. Our numerical results also indicate that the new schemes can capture accurately the movement of the trajectory and 
the finite propagation speed for the Porous-Medium equation, and can simulate blow-up phenomenon of the Keller-Segel equation.
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Fig. 31. Keller-Segel model solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 0.1𝛿𝑡, initial value (4.21) at 𝑡 = 0.12, 𝑚= 2, 𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡= 0.001.

Fig. 32. Determinant value for the Keller-Segel model with 𝑚 = 1, 2, solved by (3.26)-(3.27) with the regularization term 𝜖Δ𝑿𝒙
𝑘+1 , 𝜖 = 0.1𝛿𝑡, initial value (4.21), 

𝑀𝑥 =𝑀𝑦 = 64, 𝛿𝑡= 0.001.
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Appendix A

In this section, some details about the numerical experiments are presented.

A.1. Porous-medium and Fokker-Planck equations in 1D

For the Porous-Medium problem with free boundaries, the following boundary condition can be obtained by using the fact that 
𝜌|𝜕Ω = 0 as discussed in [19]:

(𝜕𝑋𝑥)𝑚−1𝜕𝑡𝑥 = − 𝑚 
𝑚− 1

𝜕𝑋 (𝜌(𝑋,0))𝑚−1

𝜕𝑋𝑥 
. (A.1)

The numerical free boundary conditions are proposed as follows:(
𝑥𝑘1 − 𝑥𝑘0
𝛿𝑋

)𝑚−1
𝑥𝑘+10 − 𝑥𝑘0

𝛿𝑡 
= − 𝑚 

𝑚− 1

(𝜌(𝑋1 ,0))𝑚−1−(𝜌(𝑋0 ,0))𝑚−1

𝛿𝑋

𝑥𝑘+11 −𝑥𝑘+10
𝛿𝑋

, (A.2)

(
𝑥𝑘
𝑁
− 𝑥𝑘

𝑁−1
𝛿𝑋

)𝑚−1
𝑥𝑘+1
𝑁

− 𝑥𝑘
𝑁

𝛿𝑡 
= − 𝑚 

𝑚− 1

(𝜌(𝑋𝑁 ,0))𝑚−1−(𝜌(𝑋𝑁−1 ,0))𝑚−1

𝛿𝑋

𝑥𝑘+1
𝑁

−𝑥𝑘+1
𝑁−1

𝛿𝑋

. (A.3)

The free boundaries problem for the Porous-Medium equation in the numerical experiments is solved with above free boundary 
conditions.

Similarly, for the Fokker-Planck equation with free boundaries, the following boundary condition can be obtained by using the 
fact that 𝜌|𝜕Ω = 0:

𝜕𝑡𝑥 = − 𝑚 
𝑚− 1

𝜕𝑋 (𝜌(𝑋,0))𝑚−1

(𝜕𝑋𝑥)𝑚
− 𝑉 ′(𝑥), (A.4)

which can be solved by equations analogous to (A.2)-(A.3).

A.2. Aggregation equation in 1D

In the subsection, we give details about the numerical experiments for the aggregation equation in 1D.

Implicit-explicit. Let us set 𝑥 to be implicit and 𝑦 to be explicit in scheme (3.3)-(3.4), define the following discrete energy:

𝐸ℎ(𝒙𝑘+1) = 𝛿𝑋

𝑁−1∑
𝑖=0 

𝜌(𝑋
𝑖+ 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

𝑥𝑘
𝑗+1

∫
𝑥𝑘
𝑗

⎛⎜⎜⎜⎝
|𝑥𝑘+1

𝑖+ 1
2

− 𝑦|2
2 

− ln(|𝑥𝑘+1
𝑖+ 1

2
− 𝑦|)⎞⎟⎟⎟⎠d𝑦,

=𝛿𝑋
𝑁−1∑
𝑖=0 

𝜌(𝑋
𝑖+ 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
−1
6
(𝑥𝑘+1

𝑖+ 1
2
− 𝑦)3 + (𝑥𝑘+1

𝑖+ 1
2
− 𝑦) ln(|𝑥𝑘+1

𝑖+ 1
2
− 𝑦|) − (𝑥𝑘+1

𝑖+ 1
2
− 𝑦)

)|||𝑥𝑘𝑗+1𝑥𝑘
𝑗

=𝛿𝑋
𝑁−1∑
𝑖=0 

𝜌(𝑋
𝑖+ 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
−1
6
(𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗+1)
3 + 1

6
(𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗
)3 + 𝑥𝑘

𝑗+1 − 𝑥𝑘
𝑗

)

+ 𝛿𝑋

𝑁−1∑
𝑖=0 

𝜌(𝑋
𝑖+ 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
(𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗+1) ln(|𝑥𝑘+1𝑖+ 1
2
− 𝑥𝑘

𝑗+1|) − (𝑥𝑘+1
𝑖+ 1

2
− 𝑥𝑘

𝑗
) ln(|𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗
|)) , (A.5)

and the following result can be obtained by simple calculations:

𝛿𝐸𝑘+1
ℎ

𝛿𝑥𝑘+1
𝑖

=𝛿𝑋𝜌(𝑋
𝑖+ 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
−1
4
(𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗+1)
2 + 1

4
(𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗
)2
)

+ 𝛿𝑋𝜌(𝑋
𝑖− 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
−1
4
(𝑥𝑘+1

𝑖− 1
2
− 𝑥𝑘

𝑗+1)
2 + 1

4
(𝑥𝑘+1

𝑖− 1
2
− 𝑥𝑘

𝑗
)2
)

+ 𝛿𝑋𝜌(𝑋
𝑖+ 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
1
2
ln(|𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗+1|) − 1
2
ln(|𝑥𝑘+1

𝑖+ 1
2
− 𝑥𝑘

𝑗
|))

+ 𝛿𝑋𝜌(𝑋
𝑖− 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
1
2
ln(|𝑥𝑘+1

𝑖− 1
2
− 𝑥𝑘

𝑗+1|) − 1
2
ln(|𝑥𝑘+1

𝑖− 1
2
− 𝑥𝑘

𝑗
|)) . (A.6)
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One can also find that

𝛿2𝐸𝑘+1
ℎ

𝛿(𝑥𝑘+1
𝑖

)2
=𝛿𝑋(𝜌(𝑋

𝑖+ 1
2
,0) + 𝜌(𝑋

𝑖− 1
2
,0))

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

4 
(𝑥𝑘

𝑗+1 − 𝑥𝑘
𝑗
)

+ 𝛿𝑋𝜌(𝑋
𝑖+ 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

4 

⎛⎜⎜⎜⎝
1 

𝑥𝑘+1
𝑖+ 1

2

− 𝑥𝑘
𝑗+1

− 1 
𝑥𝑘+1
𝑖+ 1

2

− 𝑥𝑘
𝑗

⎞⎟⎟⎟⎠
+ 𝛿𝑋𝜌(𝑋

𝑖− 1
2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

4 

⎛⎜⎜⎜⎝
1 

𝑥𝑘+1
𝑖− 1

2

− 𝑥𝑘
𝑗+1

− 1 
𝑥𝑘+1
𝑖− 1

2

− 𝑥𝑘
𝑗

⎞⎟⎟⎟⎠ > 0,

where the fact that 1 
𝑥−𝑦 |𝑏𝑎 = ∫ 𝑏

𝑎

1 
(𝑥−𝑦)2 d𝑦 > 0 for 𝑎 < 𝑏 has been utilized in the last inequality. Then the discrete energy is convex since 

the Hessian matrix ∇2𝐸ℎ is positive definite.

Explicit-implicit. If we set 𝑥 to be explicit and 𝑦 to be implicit in scheme (3.3)-(3.4), i.e.

𝛿𝐸𝑘+1
ℎ

𝛿𝑥𝑘+1
𝑖

=𝛿𝑋𝜌(𝑋
𝑖+ 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
−1
4
(𝑥𝑘

𝑖+ 1
2
− 𝑥𝑘+1

𝑗+1 )
2 + 1

4
(𝑥𝑘

𝑖+ 1
2
− 𝑥𝑘+1

𝑗
)2
)

+ 𝛿𝑋𝜌(𝑋
𝑖− 1

2
,0)

𝑁−1∑
𝑗=0 

𝜌𝑘
𝑗+ 1

2

(
−1
4
(𝑥𝑘
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− 𝑥𝑘+1
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(𝑥𝑘
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𝑗
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+ 𝛿𝑋𝜌(𝑋
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𝑗=0 

𝜌𝑘
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(
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ln(|𝑥𝑘

𝑖+ 1
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− 𝑥𝑘+1

𝑗+1 |) − 1
2
ln(|𝑥𝑘
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𝑗
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+ 𝛿𝑋𝜌(𝑋
𝑖− 1

2
,0)
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𝑗=0 
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𝑗
|)) . (A.7)

Implicit-implicit. If we take both 𝑥 and 𝑦 implicit in scheme (3.3)-(3.4), set 
𝛿𝐸𝑘+1

ℎ

𝛿𝑥𝑘+1
𝑖

as follows:

𝛿𝐸𝑘+1
ℎ

𝛿𝑥𝑘+1
𝑖
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2
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A.3. Keller-Segel model in 1D

The discrete energy for the Keller-Segel model in 1D is defined as follows:

𝐸ℎ(𝒙𝑘+1) =
𝑁−1∑
𝑖=0 

𝛿𝑋𝜌(𝑋
𝑖+ 1

2
,0) log
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|)) ,

it can be calculated that
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and we have
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Notice that
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However, the positivity or negativity of 𝛿2𝐸ℎ

𝛿(𝑥𝑘+1
𝑖

)2
is not determined. Whether the discrete energy is convex or not is uncertain, since 

the positivity or negativity of the Hessian matrix ∇2𝐸ℎ is not clear.
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