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Abstract. The unique solvability and error analysis of a scheme using the original Lagrange
multiplier approach proposed in [Q. Cheng, C. Liu, and J. Shen, Comput. Methods Appl. Mech.
Engrg., 367 (2020), 13070] for gradient flows is studied in this paper. We identify a necessary
and sufficient condition that must be satisfied for the nonlinear algebraic equation arising from the
original Lagrange multiplier approach to admit a unique solution in the neighborhood of its exact
solution. Then we find that the unique solvability of the original Lagrange multiplier approach
depends on the aforementioned condition and may be valid over a finite time period. Afterward, we
propose a modified Lagrange multiplier approach to ensure that the computation can continue even
if the aforementioned condition was not satisfied. Using the Cahn—Hilliard equation as an example,
we prove rigorously the unique solvability and establish optimal error estimates of a second-order
Lagrange multiplier scheme assuming this condition and that the time step is sufficiently small. We
also present numerical results to demonstrate that the modified Lagrange multiplier approach is much
more robust and can use a much larger time step than the original Lagrange multiplier approach.
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1. Introduction. We consider in this paper numerical approximations of a gen-
eral gradient flow given by

oF
1.1 Op=—-G—
( ) t(b g 5¢ ’
where E(¢) = 1(£Y/2¢,£Y/2¢) + (F(¢),1), with £ and G being positive definite op-
erators on a suitable Hilbert space with inner product (-,-), and F(¢) is a nonlinear
potential function. An important property of (1.1) is an associated energy dissipation
law:
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d 0F OF
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(12 i (95 5)
It is highly desirable to design numerical schemes which can satisfy a discrete version

of (1.2).

In recent years, a great deal of effort has been devoted to construct efficient and
accurate energy dissipative schemes for various gradient flows in the form of (1.1); we
refer the reader to [3, 15, 16, 21, 22, 28] and the references therein for more details.
For example, the convex splitting method [2, 5, 12, 13, 14, 17, 18, 32], which treats the
convex part implicitly and the concave part explicitly, ensures the unique solvability
and unconditional energy stability at a theoretical level. On the other hand, the price
of this numerical approach is associated with a nonlinear solver at each time step, due
to the fact that the nonlinear terms in the gradient flow usually correspond to a convex
energy. Moreover, some higher-order versions of this approach, in both the second
and third accuracy orders, have been extensively studied [6, 7, 8, 11, 19, 20, 30|, and
the stability analysis for a modified energy functional, composed of the original free
energy and a few numerical correction terms, has been reported. Again, a nonlinear
solver has to be implemented in these higher-order energy stable schemes, which has
always been a huge numerical challenge.

To avoid the difficulty associated with a nonlinear solver in the numerical im-
plementation, many linear approach efforts have been made for various gradient
flows. In particular, the stabilization method is applied to the Cahn—Hilliard equa-
tion [23, 24, 25, 29], in which an artificial regularization term is added to ensure the
energy stability, either in terms of the original free energy or a modified energy func-
tional, usually under a global Lipschitz condition on the nonlinear part of the free
energy. On the other hand, the invariant energy quadratization approach proposed
in [31] gives a linear and unconditionally energy stable (with respect to a modified
energy) scheme, but it requires solving a linear system with variable coefficients. The
original scalar auxiliary variable (SAV) approach, proposed in [27], leads to a lin-
ear, decoupled, and unconditionally energy stable (with respect to a modified energy)
scheme, which is very efficient and easy to implement, while it is not energy dissipa-
tive with respect to the original energy. In fact, the key idea of the SAV approach
is to rewrite the original energy into a modified formula. In turn, this numerical ap-
proach could only preserve a discrete modified energy dissipative law. On the other
hand, the Lagrange multiplier approach is able to preserve a discrete dissipative law
in an original formula. In particular, it preserves the original energy law if the orig-
inal Crank—Nicolson scheme is used, and it preserves the original energy law with
an additional higher-order dissipation term if a modified Crank—Nicolson scheme or
second-order Backward Difference Formulas (BDF) is used. In more detail, the origi-
nal Lagrange multiplier approach, proposed in [10], leads to a linear, decoupled, and
unconditionally energy stable (with respect to the original energy) scheme, combined
with a nonlinear algebraic equation for the Lagrange multiplier. In comparison with
the nonlinearly implicit numerical methods for the PDEs, such as the convex-splitting
method, the computational cost of solving one nonlinear algebraic equation is negligi-
ble, in which only a few Newton iterations are needed, in terms of a single parameter.
In principle, this approach has essentially all the desired attributes for solving gradi-
ent flows; however, it is not clear whether the nonlinear algebraic equation admits a
unique solution in the desired range.

Although there are ample numerical results indicating that the original Lagrange
multiplier approach works well in many applications, there are cases where exceedingly
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small time steps are needed or one is unable to find a suitable solution of this nonlinear
algebraic equation [1, 9]. Therefore, it is very important to identify condition(s)
which can ensure the unique solvability, and modify the original Lagrange multiplier
approach so that the computation can continue even if theses condition(s) are not
satisfied.

We observe from (2.3), which is the last equation in the original Lagrange mul-
tiplier scheme (2.1)-(2.3), that the Lagrange multiplier "*'/2 cannot be uniquely
determined around the exact solution n(t) =1 if (F(¢" ') — F(¢™),1) = 0. Therefore,
we make the following assumption on the exact solution:

d
(1.3) S| >~ with S, ::7/ F(®) da|yyn,
i Jq

where 0 < v < 1 is a prescribed small number. This assumption, of course, cannot
be satisfied a priori at every time step. Hence, it is necessary to modify the Lagrange
multiplier approach so that the computation can continue even if (1.3) is not satisfied
at some time.

The main purpose of this work is to take the Cahn—Hilliard equation as an example
of gradient flow to study the unique solvability of the nonlinear algebraic equation in
the original Lagrange multiplier approach, and to carry out its error analysis. The
main contributions of this work are as follows:

e We propose a modified Lagrange multiplier approach to deal with the case
when |S,,| < 7, and provide numerical results to show that the modified
Lagrange multiplier approach is much more robust and can use much larger
time steps than the original Lagrange multiplier approach.

e We prove rigorously that if the assumption (1.3) is satisfied and At < (%)4,
then the original Lagrange multiplier scheme (3.4)—(3.5) admits a unique
solution 7" +1/2 in the interval [1—S2 /16,1452 /16], and its numerical solution
satisfies an optimal error estimate.

The unique solvability of the nonlinear algebraic equation in the Lagrange multiplier
approach turns out to be very challenging. First of all, it is observed that the implicit
part of the numerical scheme (3.4)—(3.5) does not correspond to a globally monotone
functional in terms of the numerical solution at the next time step. To overcome
this difficulty, we have to apply certain local analysis technique to obtain the unique
solvability, viewed as a perturbation of the exact solution at each time step. To
achieve this goal, an a priori assumption has to be made at the previous time step,
in terms of the convergence estimate. With the help of this a priori assumption,
the unique solvability can then be carefully proved under the assumption (1.3) on
the exact solution. Subsequently, to recover the a priori assumption in the unique
solvability analysis, we derive an optimal rate convergence analysis at the next time
step. By a mathematical induction argument, we are able to complete the proof of
unique solvability and error analysis.

The rest of this paper is organized as follows. In section 2, we recall a second-order
scheme for the gradient flows using the original Lagrange multiplier approach, and
then present a modified Lagrange multiplier approach to deal with the case when (1.3)
is not satisfied. A numerical example is given to validate the efficiency of the improved
Lagrange multiplier approach. In section 3, we consider the Cahn—Hilliard equation as
an example and establish the unique solvability of the nonlinear system of algebraic
equations, under an a priori assumption on the previous time step. Afterward, an
error analysis is presented in section 4, and the a priori assumption is theoretically
recovered. Finally, we provide some concluding remarks in section 5.
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2. The Lagrange multiplier approach and a modified version. We denote
= % = Lo+ F'(¢). A second-order modified Crank-Nicolson scheme has been
proposed for the general gradient flow (1.1), based on the original Lagrange multiplier
approach [9]:

¢n+1 _ ¢n - .
(2.1) T_igu +1
(2.2) = <Z¢n+1 + id)nl) + nn+1/2F1(¢*,n)’
(2.3) (F(8m™+1) = F(6"),1) =2/ (677), 6 — 7).

where ¢*" = 3¢m — Lgn—1, pntl/2 = W%”n The energy stability result for the
above scheme (2.1)-(2.3) could be established following an idea similar to that in [9];
see the following theorem.

THEOREM 2.1. The numerical scheme (2.1)—(2.3) is unconditionally stable and
satisfies the energy dissipative law

En+1 — En +1 +1 +1 —1 —+1 —1
(24) =5 == (Gu" T 1) = (L(P"T =297 +9"7), 9" = 29" 677,
where the energy E™T! is defined as

(25) B = (L6 6T (L0 - 67,6 — 07+ (F(6"), 1),

Proof. Taking the inner product of (2.1), (2.2) with pu"*1, <f>”+;7;¢"7 respectively,
we obtain

n+l _ g n
(2.6) <¢ A ¢ 7,u/n-‘,-l) _ _(gun—&-l,un—&-l)
and
¢n+1 7¢n n+1\ _ 3 n+1 1 n—1 n+1/2 it 1xn ¢n+1 7¢n
(2.7) (At’u >—<»C <4¢ +Z¢ >+77 F'(¢ )’At>

Notice the equality

§n+1 lnfl n+l _ . n
G

(28) = U@ = g, — g7 — (L0 — 9, 6" — ")
+ (L(¢"H = 20" + "), 0" = 20" + 0" )}
+ %{(£¢n+l’¢n+1) 7 (£¢n’¢n)}

Combining (2.6) and (2.7) and using (2.3) and (2.8), we derived the desired energy
law. a

~—

Note that the energy defined in (2.5) is not exactly the original energy, but is the
sum of the original energy and a positive second-order perturbation. However, if we
replace the modified Crank—Nicolson scheme by the original Crank—Nicolson scheme,
it will be energy stable with respect to the original energy [9]. However, the original
Crank—Nicolson scheme is generally not recommended for dealing with dissipative
systems, as it does not introduce any additional dissipation which is needed to dump
initial errors.
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The implementation process of the above scheme can be outlined as follows. First,
we define

n n n+i n n+i +1 n
(2.9) R N a1 T I TR I a7

Substituting (¢!, z"*2) into (2.1)-(2.3), we are able to obtain ¢"** and ¢4+ from
the following two linear systems:

n43 2

n+1 ¢n n+i n+3 3
(210) At g‘u 2’ ™ 2 E<4 n+1 ¢n 1)
and
n+1
n n 3
(211) At :_g Jrz, .UJ2+2 -7 (4 n+1) +F’(¢ )

It is obvious that ¢7* and ¢3! can be solved uniquely from (2.10)~(2.11). In
more detail, the associated implicit operator is given by ﬁg—l + L, and the unique
solvability of this linear system comes from the positive definite feature of both G~!
and L. Moreover, if the operators G and £ only involve constant coefficients, such as
G =—A and £ = —£2A in the case of a constant-mobility Cahn-Hilliard equation,
then the above systems can be efficiently solved by using a Fourier-spectral method if
periodic boundary conditions are prescribed, or a fast spectral method if Neumann-
type boundary conditions are prescribed [4]. On the other hand, if G and £ involve
nonconstant coefficients, one can use suitable positive definite operators with constant
coefficients as preconditioners, and use a preconditioned conjugate gradient iteration
(cf. section 4.4 in [26]).

A substitution of (2.9) into (2.3) leads to the following nonlinear algebraic equa-
tion for n"+1/2:

(2.12)
gn(n) = / (F(¢7™ +nos™ ) —F(¢™)) dz—n / F'(¢"™) (¢ 4 nedt — ¢™) da=0.
Q Q

As mentioned in the introduction, (2.12) may not be uniquely solvable near n = 1 if the
assumption (1.3) is not satisfied. Hence, we need to modify the Lagrange multiplier
approach so that the computation can continue even if (1.3) is not satisfied.

Below we introduce a modified Lagrange multiplier approach for gradient flow
(1.1). For a given tolerance v < 1, we proceed as follows.

We first compute ¢7"* and ¢3! from (2. 10) and (2.11), respectively. Then we

’n.+1 ’n,
set "l = ¢n+1 + (an. If et = |fQ P At oG dw| > v, we continue with the

original Lagrange multiplier approach otherwise we set 7"+1/2 =1 and ¢"t! = g1,

Modified Lagrange multiplier approach:

Given numerical solutions at time steps n and n — 1; the parameter v, and the
preassigned time step dt.
Step 1 Compute ¢! and ¢5 1! from (2.10) and (2.11), and set ¢+t =g 45T,

F( - F(¢")d
Step 2 Calculate e, 11 = la i -

Step 3 if |e, 1] >, then
Step 4 Determine 7"*/2 from (2.12).
Step 5 else
Set ¢n+1 ¢n+1'
Step 6 endif

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/14/25 to 45.150.166.10 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LAGRANGE MULTIPLIER APPROACH FOR GRADIENT FLOWS T

130092

o 05 1 15 2 05 1 5 2 ) o5 1 5 2
Time «10” “10” Time a0’
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(d) Energy with At = (e) Iterations with At = (f) n with At =103
1073 1073

Fi1G. 1. (a)—(c) The evolution of energy, iterations and n using the original Lagrange multiplier
approach with At =10"". (d)-(f) The evolution of energy, iterations and n using modified Lagrange
multiplier approach with v= At =1073,

More precisely, the modified Lagrange multiplier algorithm is outlined below.
We now provide a numerical example to demonstrate the effectiveness of this
modified approach. We consider the Cahn—Hilliard equation

(2.13) ¢t + A% — A((¢* — 1)¢) =0,

with the initial condition

(2.14)
u(t=0)=0.3+0.0lrand(z,y), rand(z,y): uniform random distribution in [—1,1].

The interface width parameter is set to be €2 = 0.06.

In Figure 1(a)—(c), we plot the evolution of energy, iterations, and n with respect
to time by using the modified Crank—Nicolson scheme based on the original Lagrange
multiplier approach. We observe that even with a very small time step At = 1077,
the scheme based on the original Lagrange multiplier approach failed to converge at
about ¢ =1.65 x 1073, In Figure 1(d)—(f), we plot the evolution of energy, iterations,
and n with respect to time by using the scheme based on the modified Lagrange
multiplier approach with v = At and At =1073. For the sake of comparison, we also
plot the energy evolution by using a second-order SAV scheme with At =10"°. We
observe from Figure 1(d) that the energy curves obtained by both methods overlap and
decrease monotonically, indicating that the modified Lagrange multiplier approach
leads to correct results even at a relatively large time step At = 1073. We also
observe from Figure 1(e) that the modified approach is activated (i.e., ep+1 < 7)
in a large time interval, while only one iteration is needed for solving the nonlinear
algebraic equation (2.12) when e, 1 > . These results indicate that the modified
Lagrange multiplier approach is very effective.
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3. The unique solvability of (3.6). In this section, we provide the unique
solvability analysis of (3.6). To fix the idea, we consider the Cahn-Hilliard equation,
a typical gradient flow. In this physical model, the energy functional is given by

(3.) B0)= [ (04~ 300+ 3+ SIVoP) o
' "o \4 2 4 2
where the constant € > 0 stands for the interface width parameter, and G = —A. In
turn, the Cahn—Hilliard equation can be written as
(3:2) Ohp=Ap=A (9" —p—e*Ag),

in which p is the chemical potential

_O0E 3 2
(3.3) = 7 =¢°> —p—c“A¢.
To fix the idea, we impose periodic boundary conditions for both the phase variable, ¢,
and the chemical potential, 1. An extension to the case of the homogeneous Neumann
boundary condition is possible but not straightforward, so it will not be considered
in this paper.
In more detail, the scheme (2.1)—(2.3) could be represented as

At
(35)  (F(¢"h) — F(¢"),1) =" T2 (F'(¢™™), 0" — ¢").

Meanwhile, the Lagrange multiplier /2 is a solution of the nonlinear algebraic
equation

(3.4) M =A <F/(¢*,n)nn+1/2 —_&2A (i(anrl + id)nl)) ,

(3.6)
o) = /Q (F(p" +nAtg™) — F(¢")) dz—y /Q F/(6"™) (0" +nAtg" — ¢™) d=0.

Setting ¢"t1 = p™ + " *+1/2Atq™ and plugging it into (3.4), we find that
n 3 2 2\—1 n 1 2 2 n—1
(3.7 p =+ o AtA*) o" — 1€ AtA=¢ ,
3 ~1
(3.8) q" = <1 + 452AtA2> AF'(¢5™).

3.1. The main result. We aim to provide a theoretical analysis for the non-
linear algebraic equation (3.6), by making use of certain localized estimates. The
numerical error function is defined as

(3.9) ek =0F — % VE>o0,

in which ®” is the exact solution to the original PDE (3.2), and ¢* is denoted as the
numerical solution of (3.4)-(3.5). With an initial data with sufficient regularity, it is
assumed that the exact solution ® has regularity of class R:

(3.10) ®cR:=C%0,T;C*)NC?*0,T;C% NL=0,T; H®).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/14/25 to 45.150.166.10 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LAGRANGE MULTIPLIER APPROACH FOR GRADIENT FLOWS 779

In turn, the following functional bounds are available for the exact solution:

(3.11)
|02®|| oo (0,7+:c2) + |Psell 2w 0,708y + Rl e 0,700y < A*, || @F || s < A* VK> 0.

To proceed with the nonlinear analysis for (3.6), we begin with the following a
priori assumption for the numerical error at the previous time steps:

(3.12) e8| e < A2, ||€F||ge < At VE<n.

In turn, the following H* and HS bounds are valid for the numerical solution at the
previous time steps:

(3.13) 1"l e <||®F|| e + le¥ ||l gs < A* + At < A* +1:=A; for k=n,n— 1.

In particular, by the fact that ¢*" = %¢” — %¢"‘17 we have the following a priori
bounds for ¢*™:

| < CA;.

(3.14) 6™ 2, 16" e, 167" e < 241, [|6""

The a priori assumption (3.12) will be recovered by the convergence estimate at
the next time step, as will be demonstrated in the later analysis.
The following theorem is the main result of this section.

THEOREM 3.1. Suppose the exact solution ® for the Cahn—Hilliard equation (3.2)
is of regularity class R and satisfies the assumption (1.3). We also make the a priori
assumption (3.12), and assume that the time step is sufficiently small such that

1 1 82 /S,\*
1 At <min{ —, — —2 =0
(3.15) t_mln{Al,A4,4A12,(4) }

with the constants Ay, A4, and A12 only dependent on A*. Then the nonlinear scalar
equation (3.6) has a unique solution in [1 — VAt 1+ VAt].

We notice that the numerical results presented in the last section indicate that
the condition At < (y/4)*) is most likely too pessimistic. In particular, if a lower
bound of S,, is of O(1), which corresponds to the short and medium time scales
in the numerical simulation, the time step constraint (3.15) turns out to be a mild
one. On the other hand, if the large time scale is considered, so that the value of
|Sp| may become small, a restart of the numerical solution is needed in the modified
Lagrange multiplier approach, as outlined above. In other words, the theoretical
analysis presented in this article is more appropriate to the short and medium time
scales in the numerical simulation, and a modified approach is suggested in the long
time simulation to implement the Lagrange multiplier method.

A few preliminary estimates are needed before we can proceed with the proof of
this theorem.

3.2. Some preliminary estimates. For the sake of simplicity, we remove the
dependence on n from all constants Aj below.

LEMMA 3.2. Given ¢, ¢" 1, under the assumption (1.3) and the a priori as-
sumption (3.12), we have the following estimates:
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(3.16) [p" — @™l < A1AL,  |[p"[[Le < A2, [|¢"||L= < A3,

(3.17) ™" = ¢"||Le < AsAt,  [|¢"" Lo < A5, [|0™" = D" || < AsAt,
(3.18) [AF (p") — F'(¢")I| < A7At,  [|A(F(¢™") — F'(¢"))|| < AsAt,
(3.19) [ F'(¢™") = F'(¢")||L < AgAt, ||F'(®") — F'(¢")| L= < A10At,
(3.20) [A(E' (@) — F'(¢"))|| < A1 At,

in which A; (1 < j < 10) only depends on A*, and the time step size satisfies the
requirement A1 At <1, A4At <1.

Proof. By the representation formula (3.7) for p", we see that

-1
(3:21) pr— 9" =—e?At (I + is%m?) A? (iaﬁ" + iqﬁ"‘l) :
3 (3 1
(3.22) A" - 6") = —2At (1 * f“t“) N (wn + 4¢"‘1) |
Meanwhile, by the a priori HS estimate (3.13) for the numerical solution ¢", ¢!,
we have
3 1 3 1 3 1\ -+ -

2 A2 “n - on—1 A3 “an - on—1 <2 VA=A,

(3.23) <4¢ 1o ) (4¢ 1o ) _(4+4) =4

On the other hand, the following inequality is always available, because all the eigen-
values associated with the operator (I + 3e2AtA?)~! are bounded by 1:

-1
(3.24) H (I+i52AtA2> LIl YfeL*(9Q).

Then we arrive at

(3.25) [p" — ™| < 2At < A%At,

2 3 n 1nfl
2 (5o

2 (3 1
A3 Y on ~an—1
(273)
Therefore, an application of 3-D Sobolev embedding implies that
(3:27) [Ip" = ¢"lL= < Cllp" = ¢" |z < C(lIp" = " + A" — ™)) < CA*At,

(3.26) |A(p™ — ¢™)|| <At <A e2At.

with the elliptic regularity used in the second step. In turn, the first inequality of
(3.16) has been proved by taking A; = CA;£2.
The proof of the second inequality in (3.16) is more straightforward:

" ([ < (9™l + lIp" = ¢"[[Le < Cl|¢" |52 + [Ip" — ¢" ||
<CAy + AIAL< CA; +1,

provided that A; At <1. Again, the elliptic regularity has been recalled in the second
step. As a result, the proof for the second inequality in (3.16) is complete by taking
Ay =CA +1.

For the third inequality in (3.16), we begin with the following expansion, based
on the fact that F’(¢) = ¢* — ¢:

(3.28) AF'(¢™") = (3(¢™")? = 1)A(¢™") + 66" [V (¢™")]%.
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In turn, a combination of Holder inequality and Sobolev embedding implies that

IAF"(6™™)[| < (Bll¢™ " 12 + DIA@™™) I + 616" Lo - [V (™™ 1s
(3.29) <C(le™" I3 + DIAS"™) + Clo™" 172 < CUS™" 172 + 16" 1 12).-

A similar estimate could also be derived; the details are skipped for the sake of brevity:
(3:30) [A2F (™) < O™ [34 + [|6™" (| 24)-

As a consequence, we arrive at

mn 3 _1 *,1 *, M *, M *,1
||q’||=‘ (I+452Am2) AF (6| < [AF (6™ < O™ e + 6% 1z2),

1
3
|A¢" = <I+452AtA2> APF' (%)

< CO(lg™" l7s + 10" [l123).

< [|A%F(¢™)]

Furthermore, its combination with the a priori bound (3.14) (for ¢*™) results in
g™ I, 1Ag™ | < C(AT + Ay),
and an application of Sobolev embedding yields
lg" |z < Clig"[lu= < C(llg™ | + Aq™[I) < C(A} + Ay).

This finishes the proof of the third inequality in (3.16) by taking Az = C'(A3 + A;).
In terms of the inequalities in (3.17), we recall the regularity assumption (3.11)
and the a priori assumption (3.12):

(3.31)
@™ — ¢" || s, | — " | ge < AL, ||O" — O o < At|0,P| e < A*AL,

which in turn leads to the estimate
(332) 6 — 6%le = 216" — 6" e < 5(A* +2)AA

Therefore, the first inequality in (3.17) becomes a direct consequence of Sobolev em-
bedding:

(3.33)
167" = ¢"[|L S Cf|¢"" — @™ [lu2 S C||¢™" — ¢"[[gs < AsAt,  Ag=C(A" +2).

The second and third inequalities in (3.17) come from an application of triangular
inequality:

(334) [l¢"" [z <[19" L= + 6™" = ¢" |1 < Cll¢" ||z + AsAt < A5 = C Ay +1,

(3.35)
16" — 5" = < 9" = 8l + 167" — " |1 < Ay + AsAit = AgAt,

A= A1 + Ay.
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In terms of the first inequality in (3.18), we begin with the following expansion
identity:
(3.36)

F'(p") = F'(9") =(NLD = 1)(p" — ¢"), NLD = (p")* +p"¢" +(¢")?, so that
A(F'(p") = F'(¢") =(NLD = DA(p" = ¢") + (p" — ¢")ANLD

+ 2VNLD -V (p" — ¢").
Meanwhile, an application of the Sobolev inequality indicates that
(3.37)
INLD|| <, [VNLD|| 1, [|ANLD| < C([lp" |72 + 16" [772) < C((A1 +1)* + AD),

in which the preliminary estimates (3.13) and (3.27) have been recalled. Subsequently,

an application of the Holder and Sobolev inequalities to the expansion (3.36) results
in

(3.38)
JAF (p") = F'(¢")| < CINLD| L~ + [[VNLD|| s + [|ANLD])) - [[p" — ¢" |12
<C((A; +1)2 4 A2 + 1) A2 At = A7 At
As a result, the proof of the first inequality in (3.18) has been completed by taking
A7 = O((Al + 1)2 + A% + 1)A182.
The other inequalities in (3.18)—(3.20) could be similarly derived. The constants

A; (8 <j <11) are stated below, and the details are skipped for simplicity of presen-
tation.

(3.39)
As=C((A1 +1)2+ A2 +1)(A" 4+2), Ag=CAs, A =C((A")2+A%+1),
Ag=CAq;.

Notice that all the constants A; only depend on A*. This finishes the proof of
Lemma 3.2. ]

We aim to prove that the nonlinear equation (3.6) has a unique solution in a
neighborhood of 1. An estimate of the value for g,(1) is given by the following
lemma.

LEMMA 3.3. Given ¢, ¢" 1, under the assumption (1.3) and the a priori as-
sumption (3.12), we have |g,(1)| < A1oAt?, with A1o only depending on A*.

Proof. We begin with the expansion of g, (1):
BA0)  gn()= [ (PGP +8tg") = F(@") = (60" + Atg” = ) da.
An application of the intermediate value theorem implies that
F(p"+Atq")— F(¢™) =F' (W) (p"+ Atq"— ¢™), with €1) between p"+ Atq"™ and ¢".
As a consequence, we get
(3.41)
F(p" + Atq") — F(¢") — F'(¢™")(p" + Atg" — ¢")
— (F/(E(l)) _ F/((b*,n))(pn 4 Atqn _ ¢n)
=F"(€@) (D — ™) (p" + Atg™ — ¢™), with €@ between ¢ and ¢*™.
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By inequality (3.16), the following estimate is available:
(342) "+ At — 6" < " — 6"l + Atllg" 1~ < (A1 + Ag)AL.
Moreover, since () is between p” + Atq"™ and ¢", we see that
(343) €V =g llow <max (0" + Atg” - 6o, 6" = 67" 1.
Meanwhile, the following inequalities are available:
n *,M 1 n n—1 1 n n—1 1 n n—1
6" = 6" e = 16" = 6"l = 18" — #" e + 2" — " o
1 1
< GATAL+ CA*? < <2A* + 1) At,
Ip" + Atq" — ™" |1 <|Ip" + Atg" — @[ L + (9" — ¢™" || Lo
1
< (A1 + Ag)At+ S AAL+ CAt*/?
1
< (Al + Az + 514* + 1) At,

in which the regularity assumption (3.11) and the a priori assumption (3.12) have
been applied. This in turn yields

1
(3.44) €D — ¢* ™| L < <A1 + Az +5AT+ 1) At.
To obtain a bound for F”(¢(2), we observe that

(345) [P (€)]poe < max([|F" (p" + Atg"™) [z, [ F"(¢™) | zoo, [F" (")),
which comes from the range of £ and £3). Meanwhile, by the fact that F"(¢) =
3¢? — 1, the following bounds could be derived:

(346)  [F"(6")lle <3673 +1 < C6" 3% +1< CAZ 41,

(347)  F" (™) e <363 +1< CAZ 41,

(3.48) [F" (p" + Atg") || L= <3||p" + Atg" |7~ +1<3(A2 +1)* +1,

in which the a priori bounds (3.13)—(3.14) have been repeatedly applied, and the last
step of (3.48) is based on the following estimate:

[p" + Atq" ||z < |p"||Le + Atllg" Lo < Ag + A3At < Ay + 1,
provided that AsAt <1.

Going back to (3.45), we arrive at
(3.49) |F"(@)|| e < Az :=max(CA2 +1,3(4s +1)2+1).
As a result, a substitution of (3.42), (3.44), and (3.49) into (3.41) yields

IF(p" + Atq"™) — F(¢") — F'(¢"")(p" + Atg" — ¢")| L~
<F"(ED) g - 1€V = " |1oe - [[p" + Atg™ — ¢" | 1

1
(350) < A14At2, with A4 = (Al + Ag) <A1 + As + EA* + 1) Aqs.
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Finally, its combination with (3.40) implies the desired estimate:
|gn (DI < [[F (" + Atg") = F(¢") = F'(¢"")(p" + Atq" — ¢")||L - [Q] < A1 QAL

The proof of Lemma 3.3 is complete by taking Ao = A14]Q]. O

The derivative of g, (n) for n around the value of 1 is analyzed in the following
lemma.

LEMMA 3.4. Given ¢", ¢"~ 1, under the assumption (1.3), the a priori assumption
(3.12), and assuming At < (S, /4)*, we then have |g,,(n)| > @At for any 1—Att/? <
n<1+ A2

Proof. Without loss of generality, we assume that S, < 0. A careful calculation
reveals the following expression for g/, (n) by making use of the fact that F(¢) =

i(@* =1
(3.51)

gn(n) = / (At(p”):*q" +3nA (™) (g")* + 3 ALY (¢")® + P At (") — Atpg"
Q

6
—nAR(g" — F(67) (0"~ 6") — 2AE (67" ) d = 3 1, with
j=1

(3.52)

L=At((p")° —p™,q"), L=(—F(¢""),p" —¢"), Is=—20At(F'(6*"),q"),
(3.53)

Li=nAt(3(p")* = 1,(¢")?), I =3 At (p", (¢")?), Is=n’At*((q")*,1).

For the I, part, an application of the L> bound (3.16) for p™ and ¢™ gives the
following estimate:

(3.54)
14| < nAPB|p" |7~ +1) - lla" 1712 < (345 + 1) AZ[QnAt* < (443 +2) AZ|Q| AL,

in which the last step is based on the fact that 1 — At'/? <n<l+ AtY?. Similar
bounds could be obtained for I5 and Ig; the details are skipped for the sake of brevity:

(3.55) |I5| <44, AFQIAL,  |Tg| < 2A3|Q| At
For the I; part, we observe the following transformation:

-1
L=At((p")* = p",q") = At ((p")3 -p", (I - 352AtA2> AF'(¢*’")>

/ *.n 3 2 2 - n\3 n
(3.56) :At<F(¢’),(I+4sAtA> A((p™)? - p )),

in which the last step comes from the fact that (I + 3e2AtA?)7'A is a self-adjoint
operator. Meanwhile, we introduce an approximate integral value:

-1
(3.57) I;:=At (F’(fb”), (I + ZEQAtA2> AF’((I)")) .
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On the other hand, the following estimates could be derived:

[F'(¢™") = F'(®")|[L < [F' (") = F'(¢" )| Loe + |1F'(®") — F'(¢")|| L=
(Ag + A1o)At,
IF/(6°) — F(8") || < | F/(67) — F(@") = - 972 < (Ag + Avo) | 2,
IF e < 167+ 167 5 < A3+ A,
B/ (@) < I (™) o - 190172 < (43 + A1/,
[ACE (") — F'(p")|| < [JAF' (") — F'(¢") | + [JAF' (@) — F' (™))l
< (A7 + A11)At,
JAF'(@")[| < C(|9" |32 + [ @" | 12) < C((A*)? 4+ A%),

—

IA

in which in the inequalities in (3.17)—(3.20) have been extensively applied. Using the
above inequalities, we get

(3.58)
[l = LT[ S ALF(¢7") = FI (@) [[F7 (67" [+ AL AE (") = F'(p™)) || [AF' (27|
S A15At2,WithA15 = (Ag + A5)(A9 + A10)|Q| + C((A*)S + A*)(A7 + A11)~

A similar analysis could be performed for the I3 part, which could be transformed as

—1
Iy = 2 AH(F(¢"",q") = At (w*’”)?’ S (14 ferann?) AF’(¢*’H)>

(3.59) =At (F’(gzﬁ*»n)7 <I+ 252AtA2) - A((¢*,n)3 . ¢*,n)> )

On the other hand, we introduce an approximate integral value:

1
(3.60) I} = —2nI; = —2nAt (F/(cb”), (I + iezAtA2> AF’(@”)) .

The following estimate could be derived in the same manner; the details are left to
interested readers:

(3.61)
I3 — I < ArgAt?, Arg = (A2 + A5)(Ag + A)|Q] + C((A*)3 + A*)(Ag + Ary).

For the I part, we begin with the following expression, which comes from (3.21):
(3.62)

3 YL 1
I = (~F/(6"").p" — 6") = <2t (F’(qb*’"), (r+fam?) a2 (fors 4¢"-1)> .
Similarly, we also introduce an approximate integral value:

-1
3
(3.63) I :=&*At (F’(é*’"), (I + 452AtA2> A2<I>"> .
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To estimate the difference between I; and I3, we have the following observations:

3 1 3 1 3 1
2 (Y n —an—=1Y) __ A2 g n ~“Hn—1 _ 2 (Y n ~ n—1
A <4d> + 4¢ ) A <4<I> + 4<I> ) H A <46 + 1€ ) H

< A2 (by (3.12)),

A? <i¢>"+ i@”l) —A%9"|| = inA?(@” — o™ h|| < A*At (by (3.11)),
so that
3 1 3 1
AQ Y n o n—1 _A2¢)n < AQ Y on ~n—1
(o +b) s oo ()
_ A2 § n 1 n—1 2 § n 1 n—1\) _ A2H" *
(3.64) A 4<I> +4<I> +1|A 4<I> +4¢> AZD" || < (A" +1)At.

Moreover, because of the fact that all the eigenvalues associated with the operator
(I + 3e2AtA%)~! are bounded by 1, we see that

(3.65)
32 2_123n1n—1 32 2_12n *
]-‘rZEAlfA A qu +1¢ - I+15AtA A“D"|| < (A" +1)At.
In addition, the fact that |A2®"| < A* gives
3 -1
<I+ 452AtA2) A2o"|| < ||A%P"|| < A%
Then we arrive at the following estimate:
I = I| < At F'(¢™") — F/(@")[| - [|[F' (™)
3 L3 1
+ At (I+ aQAtAZ) A? (q§” + ¢t — <I>”> H
4 4 4
3 2 2 - 25N
(3.66) < A A, with Ayr o= (A2 + A5)(Ag + Ay)|Q] + A% (A" +1).

As a consequence, a substitution of (3.54), (3.55), (3.58), (3.61), and (3.66) into
(3.51)—(3.52) indicates that

(3.67)
g =11 + I +1; + Ry, |Ri| < ((4A3+2)A3|Q + A1s + Arg + Arr + 1) A,

provided that 4A4,A3|Q[At < 3, 243|Q|A¢* < . In addition, a careful calculation
reveals that

(3.68)

-1
It +I5 +I5 = At <F’(c1>"), (I + ZeQAtA2> (1 —2n)AF'(®") + 52<I>”)> .
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A further decomposition is made to facilitate the later analysis:
I+L+I1I=I7+13,

-1
with I = At (F’((I)"), (1 + Z€2AtA2> (—~AF'(®™) + 52A2<I>”)> :

3 —1
(3.69) I; =2(1 —n)At <F’(<I>”), (I + 452AtA2) AF’(<I>”)> .

An estimate for I§ is straightforward:

IE"(@")]I, |AF (@) < C([@" 32 + 9" 12) < C((A)* + A7),

—1
(I+%52AtA2) AF (@M)| < |AF'(@™)]| < C((A%)3 + A%),

so that
1

|13 < 2|1 —n|At- | F'(@™)] - ‘ (1 + iszAtA2> AF'(®")

(3.70) < C((A*)? 4+ A2 A2,

in which the fact that |1 —n| < At'/? has been applied in the last step. For the part
I#, we observe that —AF/(®") 4+ e2A29" = —(P,)" (satisfied by the original PDE),
so that a further decomposition is available:

(3.71)

—1
I = —At (F’((I)"), (I + is%m?) (<I>t)"> =15+ I}, with

~1
I = —At(F'(®™),(®)"), I}y= %Mt? (F’(@“), (I + ie%w) A2(<I>t)”> .
By (1.3), an exact value is available for I3:
(3.72) IF = —S,At.
The estimate for I3, could be carried out as follows
IF"(@M)| < C((A7)° + A7), [|[A%(@)"| <CA™ by (3.11),
~1
H (I+i52AtA2) A?(®)™|| < ||F'(®™)]| < C A,
so that
(3.73)
* 3 2 a2 1 (@ 3 2 2) T A2 n *\4 2Y.2 A 42
[Iio] < 3282 F' (@) (1+Ze AtA ) A2(®,)"| < 0((A%) + A2)2 AL,

Therefore, a substitution of (3.70), (3.71), (3.72), (3.73) into (3.69) results in

I 4+ I+ I = -5, At + Ry,
(3.74) with |Ra| < C((A*)* + A2 At + C((A*)? + A" AY/2 < AP/,
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provided that At is sufficiently small. Its combination with (3.67) leads to
gh(n) =—SpAt+ R, with R=Ry +Ra, |R| <2474

for any 1 — AtY/2 <y <1+ At'/2. Under the assumption At < (S,/4)* and [S,| > 7,
we have 2AtY/4 < |S | . Hence, the following estimate is valid:

‘S |At <gh(n) < 3 "'At so that |g/,(n)| > ‘S—2|At,
for 1— At/? §n§1+At1/2.
This finishes the proof of Lemma 3.4. O

3.3. Proof of Theorem 3.1. We can now proceed to the proof of Theorem 3.1.
Without loss of generality, we assume that S,, < 0 and g,(1) > 0, as the other cases
could be analyzed in the same way. By Lemmas 3.3 and 3.4, we have

(3.75) 0<gn(1) < ApAL, gl(n)> —%At for 1 — AtY/2 <p <1+ At/2,

Then we conclude that g, (n) is monotone and increasing over the interval (1 —§*,1),
with 6" = — 2?” At, so that

S
(3.76) (1) >0, gn(1—6%)<gn(1)+ - At §* < A At? — A At =0.

Therefore, there is a unique solutlon for gn( ) =0 over the interval (1 —0*,1). In

addition, we have 6* < AtY/? if At <z " is satisfied. Since g, (n) is increasing over

1 Atl/Z, 1+ AtY?], such a solutlon is unique in the interval [1 — At'Y/2 14+ At?/2).
The proof is complete.

4. Error analysis. To carry out an error analysis, we shall assume

% /Q F(®) dz /Q F/(D)®, da

which is the continuous version of (1.3) and implies in particular the assumption (1.3)
up to n < Ty/At. We note that if the assumption (4.1) is satisfied initially, it will hold
for certain interval [|0,Tp] (where Ty < T') since the solution depends continuously on
the initial data.

For the sake of brevity, we shall only carry out an error analysis for the scheme
(3.4)—(3.5) under the above assumption in the time interval [0,7p]. For time intervals
where (4.1) is not satisfied, we use the modified Lagrange multiplier approach by
setting 7"*t/2 =1 and computing ¢"*! by (3.4). Note that (3.4) with n"+1/2 =1 is
a linear equation so that its error analysis is much easier than (3.4)—(3.5). In fact, by
setting 7" t1/2 = 1, the following error analysis is also valid for (3.4) with ptl/2 =1,
Therefore, the error analysis below can essentially be extended to the whole interval
[0,7] with the modified Lagrange multiplier approach.

The main result of this section is stated in the following theorem.

(4.1) >~ for 0<t < Ty,

THEOREM 4.1. Given initial data ®° € ngr(Q), suppose the exact solution for

the Cahn—Hilliard equation (3.2) is of regularity class4R and satisfies the assumption
(4.1). Then, provided that At < Cmin((C)~?,C?e2, %), we have

m 1/2
(4.2) |AZe™|| + (52Atz ||A3ek||2> < CAt?

k=1
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for all positive integers m, such that t™ = mAt <Ty, where C’, C > 0 are some positive
constants independent of n and At.

The proof of this theorem will be carried out through a series of intermediate
estimates which we describe below.
4.1. Energy stability and the H' estimate. The following result could be

proved in a straightforward way.

LEMMA 4.2. If the numerical system (3.4)~(3.5) is solvable, it is energy stable
with respect to the modified energy functional E(¢" T, ¢™) := E(¢" 1)+ 42|V (" —
&™) ||?; i.e., the following energy inequality holds:

(4.3) E(¢™,¢") S E(¢",¢"7") ¥n20.
Proof. Taking an inner product with (3.4) by (—=A)~1(¢"*! — ¢") gives
(F1(¢*,n)nn+1/2’¢n+1 _ ¢n) _ g2 <A <3¢n+1 + 1¢n1> 7¢n+1 _ ¢n>
(4.4) X 4 4
T A+l ng2
el

Meanwhile, the following estimates are available:

(F/(¢*,n)nn+1/27¢n+1 . ¢n) _ (F(¢n+1) _ F(¢n),1) (by (3.5))7
_ (A <i¢n+1 + igbnfl ’(anrl _ ¢n> — (v (i¢n+l + iqsnl) ,V((anrl _ ¢n)>

1
(V™2 = V6™ 1%) + g IV (@™ = ™) I* = IV (8" = " D))

>

DN | =

Going back to (4.4), we arrive at the desired inequality (4.3). O

As a result of this result, we obtain a uniform bound of the original energy func-
tional E(¢™) for any n > 1:

E(¢") < E(¢",¢" 1)< < E(¢°, ¢ ') =E(¢°):=Cy by taking ¢~! = ¢°.

Meanwhile, since E(¢™) > %HVW’H?, we get

2
SIVe 2 < B(¢") < Co, o that [[Ve"|| < (2C0)"/2".

Also, the numerical solution (3.4)—(3.5) is mass conservative, so that

Gr=gni=...=g0.= B, Vn>0.

In turn, an application of the Poincaré inequality yields a uniform-in-time H' bound
for the numerical solution

(4.5) 6™ < C(I@I + IIV¢"II) < C1:=C(|Bo] + (2Co)/?™")  ¥n>0.

1

We notice that C; is uniform in time, while it depends on ™" in a polynomial pattern.
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4.2. The £°°(0,T; H?) estimate for the numerical solution.

LEMMA 4.3. Under the assumption (1.3) with v > 4ALT and the a PrioTi aSSumMp-
tion (3.12), we have

(4.6) ™|z <Co2 VYn>1,

1

in which Co depends on €+ in a polynomial pattern, while it is independent of At

and T.

Proof. First, it is noticed that, by the assumptions and Theorem 3.1, the scheme
(3.4)-(3.5) has a unique solution in 1—A¢*? <7 <14 At'/2. Taking an inner product
with (3.4) by 2A%(¢"+! — ¢™), we obtain
(4.7)

1
N T N ] (O N E R )

= 2" VEAHAF (§7), A%,
The inner product associated surface diffusion could be analyzed as follows:
<A2¢”H,A2 (2¢n+1 + ;d)nl)) _ g||A2¢n+1”2 + %(A2¢n+1’A2¢n71)
> J1a%em - 3 (Gla%en s P 1A% )
1
T N

For the right-hand side in (4.7), we recall the expansion (3.28) and apply the Holder
inequality:

(48)  JAF' (") < Bll¢™" [T + DIAG™" | + 6] ™" ([ - V™" ||Zs-

Meanwhile, the following estimates are available, based on Sobolev embedding and
weighted inequalities, as well as the uniform-in-time estimate (4.5):
(4.9)
*,M *,n|5/6 x.nl/6 *.n
¢l < Cllo™" I35 - 6™l < Cllé™
< CC?/G . (Cl + HAQ¢*,'ILH)1/67

S5 (16 e + [|AZ™m )20

(4.10)

1Ag* ™| < [Vg™m[|2/2 - a2~ 1/5 < OO - a2,
(4.11)

V™" ||La < C|[V™"

Going back to (4.8), we get

s S CV™ P4 | Ag*m ([} < COV* - | A2pm | /4,

(4.12) IAF' (¢*™)[| < CC3 + CCY? - ||A%6"™|?3 + O - | a2g*m||V/3,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/14/25 to 45.150.166.10 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LAGRANGE MULTIPLIER APPROACH FOR GRADIENT FLOWS 791

In turn, an application of the Cauchy inequality implies that
2" T2 (AF (¢77), A% <3| AF (677 - 1A% |
1
<9eTAF (@) + 27 A%m
_ *,n *,M 1 n
= PN R e N e RO R o I
(1) T T LTI +1)2
SO+ [|[ATN]T + 7| AT
10 4
(@13) <00+ Eargn? + SatelE + 1 aze
- F 20 20 4 ’
in which the Young’s inequality has been extensively applied in the fourth step, and
the last step is based on the fact that [[A2¢*"||2 < 2[|AZ¢" | + L[| AZ¢" 1|2, We

also notice that C’g(l) depends on C; and €' in a polynomial pattern.
Subsequently, a substitution of (4.8) and (4.13) into (4.7) leads to

[AG™ P =A™ >+ At]| A% |2 < Cé”AH%E;AtHA%”II% ‘%At\m%n‘l”z.
In fact, this inequality could be rewritten as
AP 4 S AL A% 4 2 Ad| A%
+ é52At||A2¢"+1||2 + 2—1052At||A2¢”||2
< IAGIP + S AL + A AT + COAL,
With an introduction of a modified H? energy
G = A6 + S AAZG | + 2 A A%
we get

G 4+ Bee? AtG" T < G + CV AL,

in which the following elliptic regularity has been used:
Bi||Af|> < ||A%f||> and By=min (Bl, 1) .
10°8
An application of the induction argument implies that
G < (1 + Boe?At)~ ("D G0 4 @
- Bge?

ey
Of course, we could introduce a uniform-in-time quantity Bj := G° + 1%52’ so that

|[A¢™||? < G™ < B3 for any n > 0. In turn, an application of the elliptic regularity
reveals that

167 2 < C(16%] + A¢*[)) < O(|Bo| + (B3)"/?) :=C2 ¥n>0.

in which the uniform-in-time constant C depends on £~! in a polynomial pattern.

This finishes the proof of Lemma 4.3. O

Using similar tools, a uniform-in-time H* bound for the numerical solution could
be established, for any k > 3, by taking the inner product with (3.4) by 2(—A)*¢n+1,
and performing the associated estimates. Details are left to interested readers.
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LEMMA 4.4. Under the assumptions of Lemma 4.3, we have, for any k > 3,

(4.14) o™ g+ <Cr VYn>1,

1

in which Cy, depends on €~ in a polynomial power, while it is independent of At and

To.

4.3. Estimate for ||¢™T! — ¢™||ge. The following estimate is needed in the
later analysis.

LEMMA 4.5. Under the assumptions of Lemma 4.3, for any £ > 2 we have

(4.15) omax |7 — ™| < DeAt,

1

where Dy >0 is a constant independent of At and Ty, dependent on €~ in a polyno-

mial style.

Proof. For any ¢ > 2, the numerical scheme (3.4) implies that
1™t = @™ e = AL A2 e,

4.16 3 1
( ) um+1/2 — FI(¢*’m)ﬁm+1/2 _ €2A (4¢m+1 + 4¢7n—1) )

By the expansion for p™*t1/2 the following estimates could be derived, helped by
repeated applications of the Holder inequality and Sobolev embedding;:

IAF (™) | e <CIE" (@™ ez < C |65 3042
m m—1]3
(4.17) <CU|™ 502 + || 6™ | 3yesa) < CCE o,

3 1 — m m—
1) a2 (Jomera gon )| <O s 16 ) < CCria,
Ht

with the uniform-in-time estimates (4.14) used. For any ¢ > 2, consequently, a sub-
stitution of (4.17)—(4.18) into (4.16) yields

| = ¢™|| e < DeAt, Dy:=C (CPy+e°Coqa) -
Note that D, depends on €' in a polynomial form, since both Cyy5 and Cyy4 do as
well. This completes the proof of Lemma 4.4. ]
4.4. A refined estimate for n™t1/2. An O(Atlm) estimate has been derived
for [n™*1/2| in Theorem 3.1. In fact, by the estimate (3.75), we see that
2
< ApAt™ 2A10At < 2A12At.

4.19 2 — 1)< = <
(419 | | N gl

Again, this rough estimate is not sufficient for an optimal rate of convergence. We
aim to improve this estimate so that n"t1/2 —1 = O(Atz). The following preliminary
lemma is needed.

LEMMA 4.6. Under the assumptions of Lemma 4.3, we have

2 S QOAtQa

(4.20) ‘

_ d)*,’n

where Qg is a constant independent of At, dependent on the exact solution ® and e'.
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Proof. A careful calculation reveals that

(4.21)
pn+Atqn+¢n *m_pn_(bn_,’_Atqn _1 T
= (e )
_1 §2 2 - _ 242 §n ln—l PR _1 n__ g n—1
_2At<l+4eAtA> (5A<4¢ +7¢ )+AF(¢ )) 5(@" ="
L I+§52AtA2 71—1 r”+1(Atr”—(¢”—¢”*1))
2 4 2 ’

3,1
with 7" = —e2A? <4¢" + 4¢"‘1) +AF(¢™"),

in which the representation formulas (3.8), (3.21) have been applied.
For the first part of (4.21), we see that A%r™ = —e2 A4 (3¢ + 19" 1)+ A3F/ (¢*),
and the following estimates could be derived by (4.14):

(4.22)  [|A%", A% < Cs,
(4.23)  [|ATF (") < I1F' (") lme < C([6™" [3gs + 167" [ 116) < C(Cg + Ce),

in which the 3-D Sobolev embedding and Holder inequality have been extensively
applied, as well as the fact that F'(¢) = ¢ — ¢. Then we arrive at

(4.24)
3 ]. —_ *,7
A% = || - At (4¢" 3 ) +APF ()] € Qu=*C + C(CE + o).

This in turn leads to

-1
((I + ieZAtA2> - I> rm (I + isQAtAZ)

For the second part of (4.21), we make use of the following expression of ¢" —¢" !
(which comes from the numerical scheme (3.4)):

3 ! 3
= 152& A% < ZleQAt.

(bn _ ¢n—1 :nn—1/2AtAF/(¢*,n—1) — 22AtA2 (Z‘én + le(bn—Q) . so that
At — (¢ = ") = ("2~ DAIAF(67771) 4 AIA(F/(6°) - F'(6"" )
(4.25) + %gmtﬂ((pn—l _ g,

For the first part of the expansion (4.25), from (4.6) we have

(4.26)
[AF (¢ DI < [|F' (™" Y= < C(llo™" Iz + 1™ m2) < C(C3 + Co).

Its combination with the preliminary rough estimate (4.19) implies that
C A A
1551
For the second part of the expansion (4.25), we begin with the following identify:
F/(¢*’n) . F/(gb*,nfl) :F”(f(g))(d)*’n . ¢*,n71),

(4.28) with F//(f(g)) — (¢*,n)2 + ¢*,n¢*,n—1 + (¢*,n—1)2 _1.

(4.27) ("2 = DALAF (67" )| < (C3 + Ca).
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In turn, extensive applications of the Holder and Sobolev inequalities indicate that

IA(E (¢*7) = F'(¢*" "I < CIE" (D) [3pall6™" = 67" |2
<SCIF"EN T lo" = 6" Mgz + 16" = 6" 2| r2)
(4.29) <C(C3+1)- DyAt,
in which the H? estimate (4.6) and the discrete temporal derivative estimate (4.15)

have been applied in the last step. For the third part of the expansion (4.25), we
make use of (4.15) again and get
(4.30)

iszAtAz(gb"*l — " )| < is%t -DyAt = %D452At2.

Therefore, a substitution of (4.27), (4.29), and (4.30) into (4.25) leads to the following
estimate:

(4.31)

CA 1
At — (¢™ — ¢" 1) || < Q2At?, with Qa= |S*1|2 (C3+C2) +C(C3+1) Do+ { Dac®.

Finally, a combination of (4.21), (4.23), and (4.31) yields the desired result (4.20)
by taking Qo = %lez + %Qg. This finishes the proof of Lemma 4.6. O

As a consequence, we are able to obtain a sharper estimate for g(1), in comparison
with Lemma 3.3.

LEMMA 4.7. Under the assumptions of Lemma 4.3, we have |g,(1)| < A1gAt,
with Q3 a constant independent of At, but dependent on the exact solution ®.

Proof. The expansion formula (3.40) of ¢g(1) indicates that
(4.32)

gn(1) =J1 + Ja,
J1 Z/Q (F(p" + Atg") — F(¢") — F' (p—!— qu +¢ ) (p™ + Atq"™ — qb")) dx,

Jo :/ ((F/ (pn —i—Ath" +¢n) _F/((b*,n)) (p" + Atg" _¢n)> de.
Q

For the J; part, we make use of the following identity:

F) - F) - F (S5 e -)
_z+y

8
HW+N¢%%W%—F<

(x—y)%, Vz,yeR, so that

LML g
1
=g+ AL 40" (" — 9" + Atg™)?.

In turn, with an application of the Holder inequality, combined with inequalities
(3.16), (3.42), we obtain

1 n n n n n n||<
I < S l" o+ Atg” 4+ 67 [ - 7 = 67+ Atq” [ -9

(4.33) < S (Ag+CCy + 1)(A; + A3)3|Q) A,

ool —
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For the J, part, we begin with the following application of the intermediate value
theorem:
F, <p” + Atg" + ¢

n A n T
5 ) _ F/(¢*’n) :F//(§(4)) . (p—i—tq—i—d) _ ¢*m> ,

2

with €4 between W and ¢*". By the fact that F"(¢) = 3¢? — 1 and the
L°° bounds for W and ¢™", we get
pn+Atq7l+¢n 2

*,M
- + o

Lo

IE" (@)l < C (

|7 + 1) <C(A3+C3+1).

Then we arrive at

pn—l—Atqn-i-(ﬁ" o
a7

<O(A3+C3+1) - QoA - (A; + Az)At - Q]2
(4.34)  =CQo|Q|(A3 + CF +1)(A1 + A3) A,

ol < (D) 1 - H 5" + At — ¢ e - |2

in which the estimate (4.20) (in Lemma 4.6) has been applied in the second step.
Therefore, a combination of (4.32), (4.33), and (4.34) yields the desired result by
finishes the proof of Lemma 4.7. ]

Next, we have to obtain a refined estimate for [**+1/2 — 1.

LEMMA 4.8. Under the assumptions of Lemma 4.3, we have |n"+1/2—1] < M%Atz
with Aqg dependent on the exact solution ®.

Proof. Again, it is assumed that g,,(1) > 0 without loss of generality. Following
the proof of Theorem 3.1, we see that

0< gn(1) < AsAB, gl () > %At for 1 — AtY/2 <p<1+At/2

Then we conclude that g, (n) is monotone and increasing over the interval (1 —§**,1),
with §** = M%Atz, so that

9n(1) =0, gn(l—0") < gn(1) — %At L < A AR — A AR =0.

Therefore, there is a unique solution for g,(n) =0 over the interval (1 — §**,1). This
finishes the proof of Theorem 4.8. ]

4.5. Proof of Theorem 4.1. First of all, it is clear that both the exact solution
®(-,t) and the numerical solution {¢*} are mass conservative:

(4.35) k=30, ¢k =¢0 VE>0,

in which ®F is the exact solution evaluated at the time instant t*. Then we conclude
that the numerical error function must have zero-average at each time step:

(4.36) ek =0, Vk>0 by taking ¢° = ®°.
In turn, the following elliptic regularity estimates are available:

(4.37) €| gr2m < CJ|A™ R for m=1,2,3, Vk>0.
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First, the a priori assumption (3.12) is made. As a result, the unique solvability
for n"+1/2 (in the range of 1 —AtY? < /2 < 1—|—At1/2) is assured by Theorem 3.1,
and a refined estimate in Lemma 4.8 becomes available.

The following truncation error analysis for the exact solution can be obtained by
using a straightforward Taylor expansion:

(4.38)

ot — pn 3 1 3 1

Z " _A F/ (I)*?” _ ZA 7q)n+1 7(1)71,—1 n (b*,n — 7(I)n _ 7q)n—1
At ( (@) —e (4 * T 5 T 3o

with ||AT"|| < CAE2.
In turn, subtracting the numerical scheme (3.4) from the consistency estimate
(4.38) yields

en+1 _on

€ _~¢
At

4.39 +A ,’771+1/2 F/ P _Fl (b*,n —€2A §en+1+len—1 _"_Tn'

(4.39)

_ (1 _ 77n+1/2)AF/((I)*’n)

4 4
Taking an inner product with (4.39) by 2A%e™*! gives
(4.40)
3 1
||A2en+1||2 _ HAQenHQ + HAQ(en—Q—l _ en)HQ +€2At (A?) <2en+1 + 2en—1> 7A3€n—‘,-1>
— 2(1 _ T]n+1/2)At(A2F/((I)*’n), ASenJrl) + 2nn+1/2At(A2(F1((I)*,n)
_ F/((b*,n))’ASen-&-l) + 2At(AT”,A3€n+1),

in which integration by parts has been extensively applied in the derivation. The
surface diffusion term could be analyzed similarly as in (4.8):

3 1 3 1
A3€n+1,A3 78n+1_~_76n—1 :7HA3en+1H2+7<A3671+17A3en—1)
2 2 2 2
3 1/1 1
> AS n+12 _ = = A3 n+1)2 - AS n—1)2
N e = PN R PN
5 1
ZZ||A3€n+1||2_1”A36n71”2-

The local truncation error term could be bounded by the Cauchy inequality:
1
(4.41) 2(AT™ A% 2| AT - || A3 | < e 72| AT™|2 + ZEQHASe"“HQ.

For the first nonlinear inner product, we recall the refined estimate |n"+t1/2 —1| <
Q3At?, as established in Lemma 4.8. In addition, the following estimate could be
derived:

(4.42) APF!(@5") S O @ || Fa + [0 [[4) < C((A")? + AY),

based on the fact that F'(¢) = ¢ — ¢, and the bound (3.11) for the exact solution.
Then we arrive at

(4.43)
2(1 _ nn+1/2)(A2F1(q)*,n)7A3en+1) S 3Q3At2 . HAQF/((I)*’TL)H . HASen+1H
S CO((A)? + A" QAL | A

<C((A")* 4+ A*)°Q3e At + %s2||A3e"+1||2.
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For the other nonlinear error term, we begin with the following application of the
intermediate value theorem:

F/((I)*,n) _ F’((;S*’n) _ Fl/(f(5))6*’n, with F"(f(S)) _ ((I)*}n)2 4 q)*,n¢*,n + (¢*,n)2 -1,
*,M 3 n 1 n—1
e’ =—€ — <€ .

2

2

This in turn leads to the following estimate:
IAZ(F" (@) = F'(¢))]

=A% F" (D)) < C( o

SO((A)? +Ci+1) - A%

[Fra + 6™ 1 Fra +1) - lle™" s

Consequently, the following inequality is available:
2 A (F (@) — F (7)), A%
<SC((A)? + O+ DA% - | A%e |
SO((A) +CF 4172 A%0 | 4 3 A%
(4.44) SC((A)? + O+ 1)%e2(| A% + [|A%e" %) + iEQHASe"HHQ-
Subsequently, a substitution of (4.41), (4.43), and (4.44) into (4.40) leads to

1 1
HA2€n+1H2 _ ||A26n||2 4 §E2At”A36n+1H2 _ 152At”A36n_1H2
SO((A")° + A)Q3e 2 A8 + Que (| A%"||” + | A% H|1?) + 2 Atl| AT |2,
with Q4 = C((A*)? + C% +1)2. Therefore, an application of the discrete Gronwall
inequality yields the desired convergence estimate (4.2).

Finally, we have to recover the a priori assumption (3.12) at time step t"*! to
close the induction argument. By the convergence estimate (4.2), we get

[AZe" | < CAL?,  2At|A%e™ 2 < C2A, so that [|A%e™ | < Ce 1AE2.
Making use of the elliptic regularity estimate (4.37), we have
" s < O A" | < QsCAL,  [|le" || go < C| A% || < QeCe™ ALY/,

Therefore, the a priori assumption (3.12) is valid at time step "1, provided that

4
At < min ((Q50)2,ng2s2, 1) :
This finishes the complete induction argument for both the solvability analysis and
the convergence estimate.

5. Concluding remarks. In this paper, we investigated the unique solvability
and carried out an error analysis for a scheme using the original Lagrange multiplier
approach proposed in [9] for gradient flows. We first identified a sufficient condition to
ensure the unique solvability, in the neighborhood of its exact solution, of the nonlinear
algebraic system arising from the original Lagrange multiplier approach. Then we find
that the unique solvability of the original Lagrange multiplier approach depends on
a class of initial conditions and is valid over a finite time period. Afterward, we
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proposed a modified Lagrange multiplier approach to ensure that the computation
can continue even if the aforementioned condition was not satisfied.

Using the Cahn-Hilliard equation and a second-order modified Crank—Nicholson
scheme with a Lagrange multiplier as an example, we provided a unique solvability
analysis using localized estimates in the neighborhood of its exact solution under an
a priori assumption, and then carried out a rigorous error analysis, which in turn
recovered the a priori assumption using an inductive argument.

The results presented in this paper are the first unique solvability and error analy-
sis for a scheme using the original Lagrange multiplier approach. In a future work,
we shall consider a more general Lagrange multiplier approach for gradient flows with
global constraints proposed in [10]. Due to the multiple Lagrange multipliers in-
volved in the latter approach, the analysis would be much more challenging, while the
analytical techniques introduced in this paper may be helpful.
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