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We present novel numerical schemes for the incompressible Navier-Stokes equations with variable 
density and address two critical concerns, i.e., the preservation of lower density bounds and the 
preservation of energy inequality under the gravitational force. Spatial discretization is performed 
using upwind discontinuous Galerkin methods for density, and continuous finite element methods 
are used for velocity and pressure. Additionally, velocity fields are projected onto divergence-free 
Raviart-Thomas finite element space in the transport equation. This relaxes using divergence-

free finite elements and therefore simplifies the implementation. The proposed schemes are 
tested on benchmark examples to demonstrate the excellent performance in accurately capturing 
the complex dynamics of these problems. Overall, the proposed numerical schemes exhibit 
enhanced stability, efficiency, and accuracy, making them suitable for modeling and simulating 
incompressible flows with variable density in practical applications.

1. Introduction

Incompressible viscous flows with variable density are described by the hyperbolic-parabolic system of partial differential equa-

tions

𝜌𝑡 + 𝐮 ⋅∇𝜌 = 0 in 𝛺 × (0, 𝑇 ], (1.1)

𝜌
(
𝐮𝑡 + (𝐮 ⋅∇)𝐮

)
+∇𝑝− 𝜈𝛥𝐮 = 𝐟 in 𝛺 × (0, 𝑇 ], (1.2)

∇ ⋅ 𝐮 = 0 in 𝛺 × (0, 𝑇 ], (1.3)

where 𝛺 is a bounded domain in ℝ𝑑 (𝑑 = 2 or 3) and 𝑇 > 0 is a fixed time. The unknowns are the density 𝜌 > 0, the velocity field 𝐮
and the pressure 𝑝; 𝜈 is the dynamic viscosity coefficient; 𝐟 represents gravity term in practical physical problems, which is expressed 
as 𝐟 = [0, −𝜌𝑔]𝑇 in two dimension. The system (1.1)-(1.3) is prescribed with initial conditions{

𝜌(𝐱,0) = 𝜌0(𝐱) in 𝛺,

𝐮(𝐱,0) = 𝐮0(𝐱) in 𝛺,
(1.4)
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and boundary conditions{
𝜌(𝐱, 𝑡)|Γ𝐮(𝐱,𝑡) = ℎ(𝐱, 𝑡),
𝐮(𝐱, 𝑡)|Γ = 𝐠(𝐱, 𝑡),

(1.5)

where Γ = 𝜕𝛺, and for any velocity field 𝐮, Γ𝐮 is the inflow boundary defined by

Γ𝐮 ∶= {𝐱 ∈ Γ ∶ 𝐮 (𝐱) ⋅ 𝐧 < 0}

with 𝐧 being the outward unit normal vector.

There exists an extensive literature on numerical schemes for solving the Navier-Stokes equations with constant density, including 
particularly decoupled methods, such as projection methods [7,10,31] and consistent splitting approaches [14,15,25,33], which de-

couple the computation of velocity and pressure. The Navier-Stokes equations with variable density, as given in equations (1.1)-(1.3), 
incorporate all the challenges of the Navier-Stokes equations with constant density, including the handling of nonlinear terms and 
the coupling of velocity and pressure through the divergence-free condition, also present additional challenges due to the presence 
of a transport equation. This could result in oscillations near the distinct interface, rendering it essential to maintain the lower bound 
of density for the sake of numerical stability and the prevention of unphysical phenomena.

Several algorithms have been proposed to extend the decoupled schemes to variable density fluid flows, e.g., see [1,3,8,11,12,16,

22,27,28] and the references therein. In addition, [5] proposed a hybrid scheme combining finite volume and finite element methods 
for numerical simulation of variable density incompressible flows, which is flexible and allows for unstructured meshes, and the 
method proposed by [19] is a filtered time-stepping approach that enhances time accuracy from first to second order that requires 
only one backward Euler solve at each time step followed by adding a time filter.

On the other hand, there is only a limited literature on the issue of preserving bound of the density. For instance, a bound-

preserving limiter is employed in [18] to preserve bounds for density. However, this limiter only provides a relatively weak form of 
bound preservation, as it only ensures that the average value of the density is bound preserving at the element level, rather than at 
every point within each element. The scarcity of previous research on this problem underscores its difficulty and the importance of 
further investigation in this area.

Another issue is the energy stability in the presence of a gravity term. Several numerical schemes [9,11,12,19,28] have been 
shown to be energy stable for variable density flows in the absence of a gravity term. To the best of the authors’ knowledge, there 
is currently no available numerical scheme that can achieve unconditional energy stability in the presence of the gravity term. Ad-

ditionally, the numerical analysis for this model poses a significant challenge, and the existing literature on this topic is relatively 
scarce. The works such as [2,4,6,13,17,24] have attempted to address this challenge. In particular, [24] introduces a mixed DG-CG 
method that ensures positivity and offers robust energy estimates along with a convergence analysis by adopting a discontinuous 
piecewise constant approximation for the density space.

The main purpose of this paper is to develop efficient, bound preserving and energy stable schemes for (1.1)-(1.3). Our schemes 
enjoy the following advantages:

• Without modifying the structure of the original equations or requiring any additional post-processing techniques, the proposed 
scheme preserves a lower bound on density;

• The schemes satisfy energy stability with added gravity terms based on the SAV approach [20,21,23,29,30];

• For the transport equation, spatial discretization is performed using upwind discontinuous Galerkin methods, which effectively 
control oscillations;

• The use of Raviart-Thomas elements to project the velocity fields in the transport equation eliminates the requirement of 
divergence-free finite elements (for solving the velocity equations), which are more computationally expensive and challenging 
to implement.

In addition to its enhanced stability, the overall algorithm is highly efficient, making it suitable for practical applications.

The remainder of the paper is structured as follows. Section 2 introduces equivalent formulations for incompressible Navier-Stokes 
equations with variable density. The numerical scheme is presented in Section 3. In Section 4, numerical experiments are provided 
to assess the performance of the proposed method. Finally, Some remarks are given in Section 5.

2. Reformulation of the model

A challenge in solving Navier-Stokes equations with variable density is that the trilinear term no longer satisfies the skew-symmetry 
property that is valid for Navier-Stokes equations with constant density. Specifically, for smooth enough 𝐮 and 𝐯 with 𝐮 ⋅ 𝐧|Γ = 0, 
the following equation holds for incompressible Navier-Stokes equations with constant density:

∫
𝛺

(𝐮 ⋅∇)𝐯 ⋅ 𝐯d𝐱 = 0 for 𝐮,𝐯 smooth enough and 𝐮 ⋅ 𝐧|Γ = 0.

This property is vital in the numerical schemes and analysis of the Navier-Stokes equations. However, it is no longer valid when 𝜌 is 
2

a variable density.
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To address this challenge, Guermond and Quartapelle [11] introduced a conserved form system

𝜌𝑡 +∇ ⋅ (𝜌𝐮) = 0 in 𝛺 × (0, 𝑇 ], (2.6)

𝜎(𝜎𝐮)𝑡 + (𝜌𝐮 ⋅∇)𝐮+ 𝐮
2
∇ ⋅ (𝜌𝐮) + ∇𝑝− 𝜈𝛥𝐮 = 𝐟 in 𝛺 × (0, 𝑇 ], (2.7)

∇ ⋅ 𝐮 = 0 in 𝛺 × (0, 𝑇 ], (2.8)

where 𝜎 =
√
𝜌. From (2.6) and (2.8), we can derive that

𝜎(𝜎𝐮)𝑡 = 𝜌𝐮𝑡 +
1
2
𝜌𝑡𝐮 = 𝜌𝐮𝑡 −

1
2
∇ ⋅ (𝜌𝐮)𝐮. (2.9)

Hence, the system (2.6)-(2.8) is mathematically equivalent to the original system (1.1)-(1.3). In addition, the nonlinear terms now 
satisfy the following properties

∫
𝛺

𝜌𝐮 ⋅∇𝜌d𝐱 = 0 and ∫
𝛺

𝜌∇ ⋅ 𝐮𝜌d𝐱 = 0, (2.10)

∫
𝛺

(𝜌𝐮 ⋅∇)𝐯 ⋅ 𝐯d𝐱 + 1
2 ∫
𝛺

∇ ⋅ (𝜌𝐮)𝐯 ⋅ 𝐯d𝐱 = 0, (2.11)

assuming that 𝐮 is divergence-free, and that 𝜌, 𝐮, 𝐯 are sufficiently smooth. Additionally, it is required that the normal component of 
𝐮 on the boundary Γ vanishes, i.e., 𝐮 ⋅ 𝐧|Γ = 0. Furthermore, taking the inner product of (2.6) with 1 and 𝜌 (𝐱, 𝑡) respectively, and 
taking the inner product of (2.7) with 𝐮 (𝐱, 𝑡), we obtain the following identities

d
d𝑡 ∫
𝛺

𝜌(⋅, 𝑡)d𝐱 = 0, (2.12)

d
d𝑡
‖𝜌(⋅, 𝑡)‖2 = 0, (2.13)

d
d𝑡

1
2
‖𝜎(⋅, 𝑡)𝐮(⋅, 𝑡)‖2 = −𝜈‖∇𝐮(⋅, 𝑡)‖2 + ∫

𝛺

𝐟(𝐱, 𝑡) ⋅ 𝐮(𝐱, 𝑡)d𝐱. (2.14)

Next, we construct efficient and accurate numerical algorithms to preserve its inherent properties for incompressible flows with 
variable density.

Assume 𝜌 ≥ 𝜌𝑚 > 0. To enforce the lower bound of the density, we introduce 𝜎(⋅, 𝑡) =
√
𝜌(⋅, 𝑡) − 𝜌𝑚, then (2.6) can be rewritten as

𝜎𝑡 +∇ ⋅ (𝜎𝐮) = 0, 𝜎(𝐱,0) =
√
𝜌(𝐱,0) − 𝜌𝑚, 𝜎(𝐱, 𝑡)||Γ𝐮(𝐱,𝑡) =√

ℎ(𝐱, 𝑡) − 𝜌𝑚. (2.15)

By applying the integration by parts formula and using (2.6), we can derive that

−∫
𝛺

𝐟(𝐱, 𝑡) ⋅ 𝐮(𝐱, 𝑡)d𝐱 = ∫
𝛺

𝜌𝑔𝐞𝑑𝐮(𝐱, 𝑡)d𝐱

= ∫
𝛺

𝜌𝑔∇𝑥𝑑𝐮(𝐱, 𝑡)d𝐱

= −∫
𝛺

∇ ⋅ (𝜌𝐮)𝑔𝑥𝑑d𝐱

= ∫
𝛺

𝜌𝑡𝑔𝑥𝑑d𝐱,

(2.16)

where 𝐞𝑑 = [0, ⋯ , 1]𝑇 , 𝑥𝑑 represents the 𝑑-th component of 𝐱 = (𝑥1, ⋯ , 𝑥𝑑 ). Then (2.14) can be rewritten as the following energy 
dissipation law

d
d𝑡

⎛⎜⎜⎝12‖𝜎(⋅, 𝑡)𝐮(⋅, 𝑡)‖2 + ∫
𝛺

𝜌(⋅, 𝑡)𝑔𝑥𝑑d𝐱
⎞⎟⎟⎠ = −𝜈‖∇𝐮(⋅, 𝑡)‖2. (2.17)

We shall deal with the gravity term by using a SAV approach. More precisely, we introduce SAV

𝜂(𝑡) =
√
𝐸1(𝜌) +𝐶0 =

√√√√∫
𝛺

𝜌(⋅, 𝑡)𝑔𝑥𝑑d𝐱 +𝐶0, (2.18)
3

then we can rewrite the system (2.6)-(2.8) as the following equivalent form
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𝜎𝑡 +∇ ⋅ (𝜎𝐮) = 0, (2.19)

𝜌 = 𝜎2 + 𝜌𝑚, 𝜎 =
√
𝜌, (2.20)

𝜎(𝜎𝐮)𝑡 + (𝜌𝐮 ⋅∇)𝐮+ 𝐮
2
∇ ⋅ (𝜌𝐮) + ∇𝑝− 𝜈𝛥𝐮− 𝜂(𝑡)√

𝐸1(𝜌) +𝐶0
𝐟 = 𝟎, (2.21)

∇ ⋅ 𝐮 = 0, (2.22)

𝜂𝑡 = − 1
2
√
𝐸1(𝜌) +𝐶0

(𝐟 ,𝐮) . (2.23)

Note that the original idea of the SAV approach [20,21,23,29,30] is to introduce auxiliary variables in the nonlinear part of the equa-

tions to treat the nonlinear term explicitly while maintaining unconditional energy stability. However, in the above formulation, we 
introduce a SAV to handle the linear gravity term. This represents an extension of the SAV approach, and provides a new perspective 
on how to apply SAV to improve the numerical stability of Navier-Stokes equations with variable density.

3. Numerical schemes

In this section, we describe the numerical methods for the reformulated system (2.19)-(2.23).

3.1. Time discretization

We construct below two time discretization schemes with first- and second-order accuracy, respectively.

Scheme 1 (First-order scheme) Given 
(
𝜎𝑛, 𝜎𝑛,𝐮𝑛, 𝜂𝑛

)
, we compute 

(
𝜎𝑛+1, 𝜎𝑛+1, 𝜌𝑛+1,𝐮𝑛+1, 𝑝𝑛+1, 𝜂𝑛+1

)
via the following steps:

Step 1. Find a solution 𝜎𝑛+1 by solving a transport equation

𝜎𝑛+1 − 𝜎𝑛
𝛿𝑡

+∇ ⋅ (𝜎𝑛+1𝐮𝑛) = 0. (3.24)

Step 2. Compute 𝜌𝑛+1, 𝜎𝑛+1 from

𝜌𝑛+1 =
(
𝜎𝑛+1

)2 + 𝜌𝑚, 𝜎𝑛+1 =
√
𝜌𝑛+1. (3.25)

Step 3. Solve 𝐮𝑛+1, 𝑝𝑛+1, 𝜂𝑛+1 from

𝜎𝑛+1
𝜎𝑛+1𝐮𝑛+1 − 𝜎𝑛𝐮𝑛

𝛿𝑡
+ (𝜌𝑛+1𝐮𝑛 ⋅∇)𝐮𝑛+1 + 𝐮𝑛+1

2
∇ ⋅ (𝜌𝑛+1𝐮𝑛) + ∇𝑝𝑛+1 − 𝜈𝛥𝐮𝑛+1 − 𝜂𝑛+1√

𝐸1(𝜌𝑛+1) +𝐶0
𝐟𝑛+1 = 𝟎, (3.26)

∇ ⋅ 𝐮𝑛+1 = 0, (3.27)

𝜂𝑛+1 − 𝜂𝑛

𝛿𝑡
= − 1

2
√
𝐸1(𝜌𝑛+1) +𝐶0

(
𝐟𝑛+1,𝐮𝑛+1

)
. (3.28)

Theorem 3.1. The Scheme 1 satisfies

𝜌𝑛+1 ≥ 𝜌𝑚, (3.29)

∫
𝛺

𝜎𝑛+1d𝐱 = ∫
𝛺

𝜎𝑛d𝐱 (3.30)

and unconditionally stable in the sense that

𝐸𝑛+1 −𝐸𝑛 ≤ −𝛿𝑡𝜈‖∇𝑢𝑛+1‖2, ∀𝛿𝑡, 𝑛 ≥ 0, (3.31)

where

𝐸𝑛+1 = 1
2
‖𝜎𝑛+1𝐮𝑛+1‖2 + |𝜂𝑛+1|2.

Proof. (3.29) is a direct consequence of (3.25). Taking the inner product of (3.24) with 1, we obtain (3.30).

Taking inner product of (3.26) with 𝐮𝑛+1 and multiplying (3.28) by 2𝜂𝑛+1, summing them up, we obtain (3.31). □

Scheme 2 (Second-order scheme) Given 
(
𝜎𝑛−1, 𝜎𝑛−1,𝐮𝑛−1, 𝜂𝑛−1

)
, 
(
𝜎𝑛, 𝜎𝑛,𝐮𝑛, 𝜂𝑛

)
, we compute 

(
𝜎𝑛+1, 𝜎𝑛+1, 𝜌𝑛+1,𝐮𝑛+1, 𝑝𝑛+1, 𝜂𝑛+1

)
via 

the following steps:

Step 1. Find a solution 𝜎𝑛+1 by solving a transport equation

𝑛+1 𝑛 𝑛−1
4

3𝜎 − 4𝜎 + 𝜎
2𝛿𝑡

+∇ ⋅ (𝜎𝑛+1𝐮⋆,𝑛) = 0, (3.32)
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Step 2. Compute 𝜌𝑛+1, 𝜎𝑛+1 from

𝜌𝑛+1 =
(
𝜎𝑛+1

)2 + 𝜌𝑚, 𝜎𝑛+1 =
√
𝜌𝑛+1, (3.33)

Step 3. Solve 𝐮𝑛+1, 𝑝𝑛+1, 𝜂𝑛+1 from

𝜎𝑛+1
3𝜎𝑛+1𝐮𝑛+1 − 4𝜎𝑛𝐮𝑛 + 𝜎𝑛−1𝐮𝑛−1

2𝛿𝑡
+ (𝜌𝑛+1𝐮⋆,𝑛 ⋅∇)𝐮𝑛+1 + 𝐮𝑛+1

2
∇ ⋅ (𝜌𝑛+1𝐮⋆,𝑛) + ∇𝑝𝑛+1 − 𝜈𝛥𝐮𝑛+1 − 𝜂𝑛+1√

𝐸1(𝜌𝑛+1) +𝐶0
𝐟𝑛+1 = 𝟎,

(3.34)

∇ ⋅ 𝐮𝑛+1 = 0, (3.35)

3𝜂𝑛+1 − 4𝜂𝑛 + 𝜂𝑛−1

2𝛿𝑡
= − 1

2
√
𝐸1(𝜌𝑛+1) +𝐶0

(
𝐟𝑛+1,𝐮𝑛+1

)
, (3.36)

where 𝐮⋆,𝑛 is any explicit second order extrapolation for 𝐮(𝑡𝑛+1), such as 𝐮⋆,𝑛 = 2𝐮𝑛+1 − 𝐮𝑛.

Theorem 3.2. The Scheme 2 satisfies

𝜌𝑛+1 ≥ 𝜌𝑚, (3.37)

∫
𝛺

3𝜎𝑛+1 − 4𝜎𝑛 + 𝜎𝑛−1d𝐱 = 0, (3.38)

and unconditionally stable in the sense that

𝐸𝑛+1 −𝐸𝑛 ≤ −𝛿𝑡𝜈‖∇𝑢𝑛+1‖2, ∀𝛿𝑡, 𝑛 ≥ 0, (3.39)

where

𝐸𝑛+1 = 1
4
(‖𝜎𝑛+1𝐮𝑛+1‖2 + ‖2𝜎𝑛+1𝐮𝑛+1 − 𝜎𝑛𝐮𝑛‖2)+ 1

2
(|𝜂𝑛+1|2 + |2𝜂𝑛+1 − 𝜂𝑛|2) .

Proof. One can infer from (3.33) the result in (3.37). Taking the inner product of (3.32) with 1, we obtain (3.38).

Taking the inner product of (3.34) with 𝐮𝑛+1 and multiplying (3.36) by 2𝜂𝑛+1, summing them up, we obtain (3.39). □

Remark 3.1. The proposed schemes preserve the lower-bound of the density without modifying the structure of the original equations. 
Moreover, the scheme does not require any additional post-processing techniques. This feature represents a significant advantage of 
the proposed schemes, as it can simplify the numerical implementation and reduce computational costs. Furthermore, preserving the 
lower bound of the density will be of critical importance in the error analysis.

3.2. Full discretization with FEM

Let Σ = {𝐾} be a shape regular quasi-uniform partition of 𝛺 with mesh size ℎ. We define

𝕎ℎ =
{
𝑤ℎ ∈𝐿2(𝛺) ∶ 𝑤ℎ||𝐾 ∈𝑄𝑘1 (𝐾), ∀𝐾 ∈ Σ

}
,

𝕍ℎ =
{
𝐯ℎ ∈ 𝐶0(𝛺)𝑑 ∶ 𝐯ℎ||𝐾 ∈

[
𝑄𝑘2 (𝐾)

]𝑑
, ∀𝐾 ∈ Σ; 𝐯ℎ||Γ = 0

}
,

ℚℎ =
{
𝑞ℎ ∈𝐿2

0(𝛺) ∩𝐶
0(𝛺) ∶ 𝑞ℎ||𝐾 ∈𝑄𝑘3 (𝐾), ∀𝐾 ∈ Σ

}
,

where 𝑄𝑘1 (𝐾), 𝑄𝑘2 (𝐾), and 𝑄𝑘3 (𝐾) are spaces of polynomials with degree 𝑘1, 𝑘2, 𝑘3 in each direction. We shall approximate the 
(velocity, pressure) in (𝕍ℎ, ℚℎ), which satisfy the inf-sup condition. For the density, we shall use an upwind DG scheme in 𝕎ℎ. To 
this end, for any function 𝑣 continuous on each 𝐾 ∈ Σ, we define

�𝑣� =
(
𝑣− − 𝑣+

)
𝐧𝑒 (3.40)

to be the jump of the function 𝑣 on an edge 𝑒 = 𝜕𝐾− ∩ 𝜕𝐾+, with 𝑣± denoting the trace of 𝑣 from 𝐾± onto 𝑒, and 𝐧𝑒 denoting the 
normal vector on 𝑒 pointing towards 𝐾+. This definition is independent of the choice of 𝐾− and 𝐾+, as switching 𝐾− and 𝐾+ does 
not change �𝑣�.

Let RT1(𝐾) denote 𝐻(div, 𝛺)-conforming Raviart-Thomas finite element spaces of order 1, namely,

RT1 (Σ) ∶=
{
𝐯 ∈𝐻(div,𝛺) ∶ 𝐯|𝐾 ∈𝑄1(𝐾)𝑑 + 𝐱𝑄1(𝐾),∀𝐾 ∈ Σ

}
. (3.41)

Additionally, we introduce the following finite element space:{ }

5

RT1
0 (Σ) ∶= 𝐯ℎ ∈ RT1 (Σ) ∶ ∇ ⋅ 𝐯ℎ = 0 in 𝛺 and 𝐯ℎ ⋅ 𝐧 = 0 on Γ . (3.42)
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Let 𝑃RT
ℎ

∶𝐿2(𝛺)𝑑 → RT1
0 (Σ) denote the 𝐿2-orthogonal projection, defined by(

𝐯− 𝑃RT
ℎ

𝐯, 𝐳ℎ
)
= 0 ∀𝐳ℎ ∈ RT1

0 (Σ) , ∀𝐯 ∈𝐿2(𝛺)𝑑 . (3.43)

Then, a fully discrete linearized FEM for Scheme 1 is as follows.

Scheme 1ℎ (Full discrete first-order scheme) Find 𝜎𝑛+1
ℎ
, 𝜌𝑛+1
ℎ
, 𝜎𝑛+1
ℎ

∈𝕎ℎ, 𝐮𝑛+1ℎ ∈ 𝕍ℎ, 𝑝𝑛+1ℎ ∈ℚℎ and 𝜂𝑛+1
ℎ

∈ ℝ satisfying the equa-

tions: (
𝜎𝑛+1
ℎ

− 𝜎𝑛
ℎ

𝛿𝑡
,𝑤ℎ

)
+

(∑
𝑒

(
̂̃𝜎
𝑛+1
ℎ 𝑃RT

ℎ
𝐮𝑛
ℎ
, �𝑤ℎ�

)
𝑒

−
(
𝜎𝑛+1
ℎ
𝑃RT
ℎ

𝐮𝑛
ℎ
,∇𝑤ℎ

))
= 0, (3.44)

𝜌𝑛+1
ℎ

=
(
𝜎𝑛+1
ℎ

)2 + 𝜌𝑚, 𝜎𝑛+1
ℎ

=
√
𝜌𝑛+1
ℎ
, (3.45)(

𝜎𝑛+1
ℎ

𝜎𝑛+1
ℎ

𝐮𝑛+1
ℎ

− 𝜎𝑛
ℎ
𝐮𝑛
ℎ

𝛿𝑡
,𝐯ℎ

)
+

(
(𝜌𝑛+1
ℎ

𝐮𝑛
ℎ
⋅∇)𝐮𝑛+1

ℎ
+

𝐮𝑛+1
ℎ

2
∇ ⋅ (𝜌𝑛+1

ℎ
𝐮𝑛
ℎ
),𝐯ℎ

)
(3.46)

+
(
∇𝑝𝑛+1
ℎ
,𝐯ℎ

)
+ 𝜈

(
∇𝐮𝑛+1
ℎ
,∇𝐯ℎ

)
−

𝜂𝑛+1
ℎ√

𝐸1(𝜌𝑛+1ℎ ) +𝐶0

(
𝐟𝑛+1
ℎ
,𝐯ℎ

)
= 𝟎,

(
𝐮𝑛+1
ℎ
,∇𝑞ℎ

)
= 0, (3.47)

𝜂𝑛+1
ℎ

− 𝜂𝑛
ℎ

𝛿𝑡
= − 1

2
√
𝐸1(𝜌𝑛+1ℎ ) +𝐶0

(
𝐟𝑛+1
ℎ
,𝐮𝑛+1
ℎ

)
, (3.48)

for all test function (𝑤ℎ, 𝐯ℎ, 𝑞ℎ) ∈𝕎ℎ ×𝕍ℎ ×ℚℎ, where ̂̃𝜎
𝑛+1
ℎ is the numerical flux, which is a single-valued function defined at the cell 

interfaces and in general depending on the values of the numerical solution ̃𝜎𝑛+1
ℎ

from both sides of the interface. Here, the numerical 
flux on an edge 𝑒 can be chosen according to the upwind principle, namely,

̂̃𝜎
𝑛+1
ℎ =

{
(𝜎𝑛+1
ℎ

)− on 𝑒𝑛+,

(𝜎𝑛+1
ℎ

)+ on 𝑒𝑛−,
(3.49)

where 𝑒𝑛− and 𝑒𝑛+ denote the numerical inflow and outflow parts of an edge 𝑒 at time 𝑡 = 𝑡𝑛, defined by

𝑒𝑛− ∶=
{
𝐱 ∈ 𝑒 ∶

(
𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒

)
(𝐱) ⩽ 0

}
and 𝑒𝑛+ ∶=

{
𝐱 ∈ 𝑒 ∶

(
𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒

)
(𝐱) > 0

}
.

The upwind DG method used in the above is effective in controlling numerical oscillations and maintaining the stability of the 
numerical scheme, even in the presence of strong gradients and discontinuities in the solution. This approach provides a robust and 
accurate solution method for simulating variable-density Navier-Stokes equations. At the same time, we employ the Raviart-Thomas 
(RT) space projection method to approximate the velocity field in the transport equation. This approach maintains the accuracy and 
stability of the numerical solution and eliminates the need for using divergence-free finite elements, which can be computationally 
expensive and difficult to implement.

Theorem 3.3. Scheme 1ℎ admits a unique solution. Scheme 1ℎ fulfills the following condition:

∫
𝛺

𝜎𝑛+1
ℎ

d𝐱 = ∫
𝛺

𝜎𝑛
ℎ
d𝐱. (3.50)

Moreover, it is unconditionally energy stable in the sense that

𝐸𝑛+1
ℎ

−𝐸𝑛
ℎ
≤ −𝛿𝑡𝜈‖∇𝑢𝑛+1

ℎ
‖2, ∀𝛿𝑡, 𝑛 ≥ 0, (3.51)

where

𝐸𝑛+1
ℎ

= 1
2
‖𝜎𝑛+1
ℎ

𝐮𝑛+1
ℎ

‖2 + |𝜂𝑛+1
ℎ

|2.
Proof. Note that equation (3.44) has a unique solution 𝜎𝑛+1

ℎ
if and only if the following homogeneous linear equation only has zero 

solution 𝜙ℎ = 0. Find 𝜙ℎ ∈𝕎ℎ such that(
𝜙ℎ
𝛿𝑡
,𝑤ℎ

)
+
∑
𝑒

(
𝜙ℎ𝑃

RT
ℎ

𝐮𝑛
ℎ
, �𝑤ℎ�

)
𝑒
−
(
𝜙ℎ𝑃

RT
ℎ

𝐮𝑛
ℎ
,∇𝑤ℎ

)
= 0, ∀𝑤ℎ ∈𝕎ℎ.

Substituting 𝑤ℎ = 𝜙ℎ into the homogeneous linear equation above and using integration by parts, we obtain

1 2
∑(

̂ RT 𝑛
) ∑( RT 𝑛

)

6

𝛿𝑡
‖𝜙ℎ‖ +

𝑒

𝜙ℎ𝑃ℎ 𝐮
ℎ
, �𝜙ℎ� 𝑒 −

𝑒

𝑃
ℎ

𝐮
ℎ
,{𝜙ℎ}�𝜙ℎ� 𝑒 = 0,
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where {𝜙ℎ} =
1
2 (𝜙

−
ℎ
+ 𝜙+

ℎ
) denotes the average trace of 𝜙ℎ onto an edge 𝑒. Here we have used the following identity∑

𝐾

(
𝜙ℎ𝑃

RT
ℎ

𝐮𝑛
ℎ
,∇𝜙ℎ

)
𝐾
= 1

2
∑
𝐾

(
𝑃RT
ℎ

𝐮𝑛
ℎ
,∇𝜙2

ℎ

)
𝐾

= 1
2
∑
𝑒

((
−𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒, (𝜙+ℎ )

2)
𝑒
+
(
𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒, (𝜙−ℎ )

2)
𝑒

)
= 1

2
∑
𝑒

(
𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒, (𝜙−ℎ )

2 − (𝜙+
ℎ
)2
)
𝑒

=
∑
𝑒

(
𝑃RT
ℎ

𝐮𝑛
ℎ
,{𝜙ℎ}�𝜙ℎ�

)
𝑒
.

It is straightforward to verify the following relations:

𝜙ℎ − {𝜙ℎ} =
𝜙−
ℎ
− 𝜙+

ℎ

2
on 𝑒𝑛+ and 𝜙ℎ − {𝜙ℎ} = −

𝜙−
ℎ
−𝜙+

ℎ

2
on 𝑒𝑛−. (3.52)

Then we have∑
𝑒

(
𝜙ℎ𝑃

RT
ℎ

𝐮ℎ, �𝜙ℎ�
)
𝑒
=
∑
𝑒

(
𝑃RT
ℎ

𝐮ℎ,
(
{𝜙ℎ} +

𝜙−
ℎ
− 𝜙+

ℎ

2

)
�𝜙ℎ�

)
𝑒𝑛+

+

(
𝑃RT
ℎ

𝐮ℎ,
(
{𝜙ℎ} −

𝜙−
ℎ
− 𝜙+

ℎ

2

)
�𝜙ℎ�

)
𝑒𝑛−

=
∑
𝑒

(
𝑃RT
ℎ

𝐮ℎ,{𝜙ℎ}�𝜙ℎ�
)
𝑒
+

(
𝑃RT
ℎ

𝐮ℎ ⋅ 𝐧𝑒,
(𝜙−
ℎ
−𝜙+

ℎ
)2

2

)
𝑒𝑛+

−

(
𝑃RT
ℎ

𝐮ℎ ⋅ 𝐧𝑒,
(𝜙−
ℎ
− 𝜙+

ℎ
)2

2

)
𝑒𝑛−

.

Therefore,

1
𝛿𝑡
‖𝜙ℎ‖2 +∑

𝑒

(
𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒,

(𝜙−
ℎ
− 𝜙+

ℎ
)2

2

)
𝑒𝑛+

−
∑
𝑒

(
𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒,

(𝜙−
ℎ
− 𝜙+

ℎ
)2

2

)
𝑒𝑛−

= 0.

Since 
(
𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒, (𝜙−ℎ − 𝜙

+
ℎ
)2
)
𝑒𝑛+

⩾ 0 and 
(
𝑃RT
ℎ

𝐮𝑛
ℎ
⋅ 𝐧𝑒, (𝜙−ℎ − 𝜙

+
ℎ
)2
)
𝑒𝑛−

⩽ 0, it follows that ‖𝜙ℎ‖ = 0. This proves the existence and 
uniqueness of solutions to (3.44).

Since 𝜌𝑛+1
ℎ

=
(
𝜎𝑛+1
ℎ

)2 + 𝜌𝑚 > 0 and 𝜎𝑛+1
ℎ

=
√
𝜌𝑛+1
ℎ
> 0, we can easily show that the homogeneous linear equations corresponding 

to (3.46)–(3.48) only have zero solutions. This proves the existence and uniqueness of solutions to (3.46)–(3.48).

Substituting 𝑤ℎ = 1 into (3.44), one can obtain result (3.50).

Substituting 𝐯ℎ = 𝐮𝑛+1
ℎ

and 𝑞ℎ = 𝑝𝑛+1ℎ into (3.46) and (3.47) respectively, and multiplying (3.48) with 2𝜂𝑛+1
ℎ

, one can derive the 
following relation:

1
2𝛿𝑡

(‖𝜎𝑛+1
ℎ

𝐮𝑛+1
ℎ

‖2 − ‖𝜎𝑛
ℎ
𝐮𝑛
ℎ
‖2 + ‖𝜎𝑛+1

ℎ
𝐮𝑛+1
ℎ

− 𝜎𝑛
ℎ
𝐮𝑛
ℎ
‖2)+ 𝜈‖∇𝐮𝑛+1

ℎ
‖2 + 1

𝛿𝑡

(|𝜂𝑛+1
ℎ

|2 − |𝜂𝑛
ℎ
|2 + |𝜂𝑛+1

ℎ
− 𝜂𝑛

ℎ
|2) = 0,

which implies the energy inequality in (3.51). □

Similarly, we can construct full discrete version Scheme 2ℎ for the second-order scheme Scheme 2, and prove similar results as 
stated above for the fully discrete second-order scheme. For the sake of brevity, we omit the detail here.

The above scheme can be efficiently implemented as follows.

First, given 𝐮𝑛
ℎ
, we can obtain Ψℎ = 𝑃RT

ℎ
𝐮𝑛
ℎ

by solving the following mixed problem where 𝜙ℎ ∈Q1
dG (𝐾) is a Lagrange multiplier:(

Ψℎ, 𝐳ℎ
)
+
(
𝜙ℎ,∇ ⋅ 𝐳ℎ

)
=
(
𝐮𝑛
ℎ
, 𝐳ℎ

)
, ∀𝐳ℎ ∈ RT1 (𝐾) , (3.53)(

∇ ⋅Ψℎ,𝜓ℎ
)
= 0, ∀𝜓ℎ ∈Q1

dG (𝐾) . (3.54)

Next, we set

𝐮𝑛+1
ℎ

= 𝐮𝑛+11,ℎ + 𝜂𝑛+1
ℎ

𝐮𝑛+12,ℎ , 𝐮𝑛+1
𝑖,ℎ

|Γ = 0, (3.55)

𝑝𝑛+1
ℎ

= 𝑝𝑛+11,ℎ + 𝜂𝑛+1
ℎ
𝑝𝑛+12,ℎ , (3.56)

in (3.46)-(3.47). We can then determine 𝐮𝑛+1
𝑖,ℎ
, 𝑝𝑛+1
𝑖,ℎ

(𝑖 = 1, 2) from(
𝜎𝑛+1
ℎ

𝜎𝑛+1
ℎ

𝐮𝑛+11,ℎ − 𝜎𝑛
ℎ
𝐮𝑛
ℎ

𝛿𝑡
,𝐯ℎ

)
+

(
(𝜌𝑛+1
ℎ

𝐮𝑛
ℎ
⋅∇)𝐮𝑛+11,ℎ +

𝐮𝑛+11,ℎ

2
∇ ⋅ (𝜌𝑛+1

ℎ
𝐮𝑛
ℎ
),𝐯ℎ

)
+
(
∇𝑝𝑛+11,ℎ ,𝐯ℎ

)
+ 𝜈

(
∇𝐮𝑛+11,ℎ ,∇𝐯ℎ

)
= 𝟎, (3.57)

(
𝑛+1
𝜎𝑛+1
ℎ

𝐮𝑛+12,ℎ
) (

𝑛+1 𝑛 𝑛+1
𝐮𝑛+12,ℎ 𝑛+1 𝑛

)

7

𝜎
ℎ 𝛿𝑡

,𝐯ℎ + (𝜌
ℎ

𝐮
ℎ
⋅∇)𝐮2,ℎ +

2
∇ ⋅ (𝜌

ℎ
𝐮
ℎ
),𝐯ℎ (3.58)
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+
(
∇𝑝𝑛+12,ℎ ,𝐯ℎ

)
+ 𝜈

(
∇𝐮𝑛+12,ℎ ,∇𝐯ℎ

)
− 1√

𝐸1(𝜌𝑛+1ℎ ) +𝐶0

(
𝐟𝑛+1
ℎ
,𝐯ℎ

)
= 𝟎,

(
𝐮𝑛+1
𝑖,ℎ
,∇𝑞ℎ

)
= 0. (3.59)

The above system is a mixed formulation for 𝐮𝑛+1
𝑖,ℎ
, 𝑝𝑛+1
𝑖,ℎ

(𝑖 = 1, 2) whose wellposedness can be established in the same way as 
(3.46)–(3.48).

Once 𝐮𝑛+1
𝑖,ℎ

(𝑖 = 1, 2) are known, we can plug (3.55) in (3.48) to determine explicitly 𝜂𝑛+1
ℎ

from(
1 + 𝛿𝑡

2
√
𝐸1(𝜌𝑛+1) +𝐶0

(
𝐟𝑛+1
ℎ
,𝐮𝑛+12,ℎ

))
𝜂𝑛+1
ℎ

= 𝜂𝑛
ℎ
− 𝛿𝑡

2
√
𝐸1(𝜌𝑛+1) +𝐶0

(
𝐟𝑛+1
ℎ
,𝐮𝑛+11,ℎ

)
. (3.60)

We can replace the term 𝛿𝑡

2
√
𝐸1(𝜌𝑛+1)+𝐶0

(
𝐟𝑛+1
ℎ
,𝐮𝑛+12,ℎ

)
in the above by setting 𝐯ℎ = 𝐮𝑛+12,ℎ in (3.58) to obtain

(
1 + 1

2
‖𝜎𝑛+1
ℎ

𝐮𝑛+12,ℎ ‖2 + 1
2
𝛿𝑡𝜈‖∇𝐮𝑛+12 ‖2) 𝜂𝑛+1

ℎ
= 𝜂𝑛

ℎ
− 𝛿𝑡

2
√
𝐸1(𝜌𝑛+1) +𝐶0

(
𝐟𝑛+1
ℎ
,𝐮𝑛+11,ℎ

)
. (3.61)

Hence, we can determine 𝜂𝑛+1
ℎ

uniquely from the above. Finally, we can obtain 𝐮𝑛+1
ℎ

and 𝑝𝑛+1
ℎ

from (3.55)-(3.56).

To summarize, given 𝜎𝑛
ℎ
, 𝜎𝑛
ℎ
, 𝐮𝑛
ℎ
, 𝜂𝑛
ℎ
, Scheme 1ℎ can be implemented as follows:

1. Solve 𝑃RT
ℎ

𝐮𝑛
ℎ

from (3.53)-(3.54);

2. Solve 𝜎𝑛+1
ℎ

from (3.44);

3. Compute 𝜌𝑛+1
ℎ

and 𝜎𝑛+1
ℎ

from (3.45);

4. Solve 𝐮𝑛+1
𝑖,ℎ
, 𝑝𝑛+1
𝑖,ℎ

(𝑖 = 1, 2) from (3.57)-(3.59);

5. Compute 𝜂𝑛+1
ℎ

from (3.61);

6. Update 𝐮𝑛+1
ℎ
, 𝑝𝑛+1
ℎ

by (3.55)-(3.56).

Remark 3.2. For the scheme Scheme 1ℎ, setting 𝑤ℎ = 𝜎𝑛+1
ℎ

, we can obtain ‖𝜎𝑛+1
ℎ

‖2 − ‖𝜎𝑛
ℎ
‖2 = ‖𝜎𝑛+1

ℎ
− 𝜎𝑛

ℎ
‖2 = 𝑂(𝛿𝑡2), i.e. 

∫
𝛺
𝜌𝑛+1
ℎ

d𝑥 − ∫
𝛺
𝜌𝑛
ℎ
d𝑥 =𝑂(𝛿𝑡2), which indicates that the mass is only conserved up to second-order accuracy. Inspired by [26], we can 

obtain a numerical scheme that precisely satisfies mass conservation. Denote �̄� = 1|𝛺| ∫𝛺 𝜎d𝑥. We can equivalently rewrite (2.19) as

𝜎𝑡 + 𝐮 ⋅∇𝜎 + 𝛼(∇ ⋅ 𝐮)
(
𝜎 − �̄�

)
= 0,

where 𝛼 is a constant. Therefore, we can construct a first-order fully discrete numerical scheme as follows:(
𝜎𝑛+1
ℎ

− 𝜎𝑛
ℎ

𝛿𝑡
,𝑤ℎ

)
+
(
𝐮𝑛
ℎ
⋅∇𝜎𝑛+1

ℎ
,𝑤ℎ

)
+ 𝛼

(
(∇ ⋅ 𝐮𝑛

ℎ
)
(
𝜎𝑛+1
ℎ

− �̄�𝑛+1
ℎ

)
,𝑤ℎ

)
= 0. (3.62)

By setting 𝑤ℎ = 1 in (3.62) and noting that ∇�̄� = 0, one can then obtain

∫
𝛺

𝜎𝑛+1
ℎ

d𝑥 = ∫
𝛺

𝜎𝑛
ℎ
d𝑥− 𝛿𝑡

(
𝐮𝑛
ℎ
,∇(𝜎𝑛+1

ℎ
− �̄�𝑛+1

ℎ
)
)
− 𝛿𝑡𝛼

(
∇ ⋅ 𝐮𝑛

ℎ
, 𝜎𝑛+1
ℎ

− �̄�𝑛+1
ℎ

)
= ∫
𝛺

𝜎𝑛
ℎ
d𝑥+ 𝛿𝑡(1 − 𝛼)

(
∇ ⋅ 𝐮𝑛

ℎ
, 𝜎𝑛+1
ℎ

− �̄�𝑛+1
ℎ

)
.

Since ∫
𝛺
𝜎𝑛+1
ℎ

− �̄�𝑛+1
ℎ

d𝑥 = 0, it follows that 𝜎𝑛+1
ℎ

− �̄�𝑛+1
ℎ

∈ ℚℎ provided 𝑘1 ≤ 𝑘3, where we recall that 𝑘1, 𝑘2, 𝑘3 are the degrees of 
polynomials of 𝑄𝑘1 (𝐾), 𝑄𝑘2 (𝐾), respectively. By the weak divergence-free condition, we have(

∇ ⋅ 𝐮𝑛
ℎ
, 𝜎𝑛+1
ℎ

− �̄�𝑛+1
ℎ

)
= 0.

Therefore, if 𝛼 = 1 or 𝑘1 ≤ 𝑘3, the numerical scheme ensures conservation for 𝜎𝑛+1
ℎ

, i.e. ∫
𝛺
𝜎𝑛+1
ℎ

d𝑥 = ∫
𝛺
𝜎𝑛
ℎ
d𝑥.

By denoting 𝜎𝑛+1∕2
ℎ

=
𝜎𝑛+1
ℎ

+𝜎𝑛
ℎ

2 , setting 𝑤ℎ = 𝜎
𝑛+1∕2
ℎ

− �̄�𝑛+1∕2
ℎ

in (3.62), and using (𝒖 ⋅∇𝜌, 𝜌) = −1
2 ((∇ ⋅ 𝒖)𝜌, 𝜌), we obtain(

𝜎𝑛+1
ℎ

− 𝜎𝑛
ℎ
, 𝜎
𝑛+1∕2
ℎ

− �̄�𝑛+1∕2
ℎ

)
= −𝛿𝑡

(
𝐮𝑛
ℎ
⋅∇𝜎𝑛+1

ℎ
, 𝜎
𝑛+1∕2
ℎ

− �̄�𝑛+1∕2
ℎ

)
− 𝛿𝑡𝛼

(
(∇ ⋅ 𝐮𝑛

ℎ
)
(
𝜎𝑛+1
ℎ

− �̄�𝑛+1
ℎ

)
, 𝜎
𝑛+1∕2
ℎ

− �̄�𝑛+1∕2
ℎ

)
= 𝛿𝑡

(1
2
− 𝛼

)(
(∇ ⋅ 𝐮𝑛

ℎ
)
(
𝜎𝑛+1
ℎ

− �̄�𝑛+1
ℎ

)
, 𝜎
𝑛+1∕2
ℎ

− �̄�𝑛+1∕2
ℎ

)
.

8

If �̄�𝑛+1∕2
ℎ

= 1|𝛺| ∫𝛺 �̃�𝑛+1∕2ℎ
d𝑥, then
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Table 1

The temporal discretization error and convergence rates for scheme 1ℎ at 𝑇 = 1.

𝛿𝑡 ‖𝑒𝜌‖𝐿2 order ‖𝑒𝐮‖𝐿2 order ‖𝑒𝑝‖𝐿2 order

1/8 4.79E-02 - 7.21E-03 - 4.80E-02 -

1/16 2.40E-02 0.98 3.58E-03 1.01 2.46E-02 0.97

1/32 1.23E-02 0.99 1.78E-03 1.01 1.24E-02 0.98

1/64 6.16E-03 0.99 8.86E-04 1.00 6.25E-03 0.99

1/128 3.08E-03 1.00 4.42E-04 1.00 3.13E-03 1.00

(
𝜎𝑛+1
ℎ

− 𝜎𝑛
ℎ
, 𝜎
𝑛+1∕2
ℎ

− �̄�𝑛+1∕2
ℎ

)
= 1

2
‖𝜎𝑛+1
ℎ

‖2 − (
𝜎𝑛+1
ℎ
, �̄�
𝑛+1∕2
ℎ

)
−
(1
2
‖𝜎𝑛
ℎ
‖2 − (

𝜎𝑛
ℎ
, �̄�
𝑛+1∕2
ℎ

))
= 1

2

⎛⎜⎜⎜⎝‖𝜎
𝑛+1
ℎ

‖2 − ⎛⎜⎜⎝∫𝛺 𝜎𝑛+1
ℎ

d𝑥
⎞⎟⎟⎠
2⎞⎟⎟⎟⎠−

1
2

⎛⎜⎜⎜⎝‖𝜎
𝑛
ℎ
‖2 − ⎛⎜⎜⎝∫𝛺 𝜎𝑛

ℎ
d𝑥
⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

In summary, if 𝛼 = 1
2 and 𝑘1 ≤ 𝑘3, we can obtain ‖𝜎𝑛+1

ℎ
‖2 = ‖𝜎𝑛

ℎ
‖2, which implies mass conservation, i.e., ∫

𝛺
𝜌𝑛+1
ℎ

d𝑥 = ∫
𝛺
𝜌𝑛
ℎ
d𝑥.

Although the numerical scheme (3.62) accurately satisfies mass conservation, it introduces an additional term, 𝛼(∇ ⋅ 𝐮)(𝜎 − �̄�), 
which increases the error and may lead to inaccuracies, particularly in rapidly changing flows. Additionally, this scheme constrains 
the polynomial degree of the finite element space for the 𝜎 to 𝑘1 ≤ 𝑘3. To capture more detailed fluid dynamics by using a higher-

order approximation space for the 𝜎, the polynomial degree of the finite element space of the pressure must be increased. This, in 
turn, raises the computational cost of the scheme. Balancing the need for higher accuracy and lower computational cost remains a 
significant challenge, especially in simulations involving complex and highly dynamic flow fields.

4. Numerical simulations

We start by presenting numerical examples to verify the convergence of the proposed Scheme 1ℎ and Scheme 2ℎ, followed by 
numerical simulations of some benchmark simulations, such as the air bubble rising in water and Rayleigh-Taylor instability, to 
demonstrate the robustness and energy stability of the schemes. These simulations are challenging due to the complex and dynamic 
nature of the fluid interfaces and the occurrence of discontinuities. We compare our simulation results with those obtained from other 
numerical methods to validate the accuracy and effectiveness of our proposed schemes.

4.1. Accuracy test

In order to test the numerical schemes constructed as above, we consider variable density Navier–Stokes equations with the exact 
solution

𝜌(𝑥, 𝑦, 𝑡) = 2 + 𝑥 cos(sin(𝑡)) + 𝑦 sin(sin(𝑡)),

𝐮(𝑥, 𝑦, 𝑡) =
(
−𝑦 cos(𝑡)
𝑥 cos(𝑡)

)
,

𝑝(𝑥, 𝑦, 𝑡) = sin(𝑥) sin(𝑦) sin(𝑡),

(4.63)

in 𝛺 = (−1, 1) × (−1, 1), and the corresponding forcing term is

𝐟 =
(
𝜌(𝑥, 𝑦, 𝑡)

(
𝑦 sin(𝑡) − 𝑥 cos2(𝑡)

)
+ cos(𝑥) sin(𝑦) sin(𝑡)

−𝜌(𝑥, 𝑦, 𝑡)
(
𝑥 sin(𝑡) + 𝑦 cos2(𝑡)

)
+ sin(𝑥) cos(𝑦) sin(𝑡)

)
. (4.64)

Here we set 𝜈 = 1. Denote

𝑒𝑛+1𝜌 = 𝜌
(
𝑡𝑛+1

)
− 𝜌𝑛+1

ℎ
, 𝑒𝑛+1𝐮 = 𝐮

(
𝑡𝑛+1

)
− 𝐮𝑛+1

ℎ
, 𝑒𝑛+1𝑝 = 𝑝

(
𝑡𝑛+1

)
− 𝑝𝑛+1

ℎ
.

We use 
(
𝑄2,𝑄2,𝑄1) discretization for the density, velocity, and pressure fields in our numerical simulations. We first use a mesh size 

of ℎ = 1∕128 so that the spatial error is negligible compared with the time discretization error for the time steps considered. The 𝐿2-

norm errors at 𝑇 = 1 for Scheme 1ℎ and Scheme 2ℎ are presented in Table 1 and Table 2, respectively. To compute the convergence 
rate in space, we set 𝛿𝑡 = 1

8ℎ
3∕2 so that the time discretization error is negligible compared with spatial discretization error. We 

observe in Table 3 that the expected convergence rates are achieved for all cases, confirming the accuracy of the proposed schemes.

In Fig. 1, we present the mass error and convergence rates for scheme 1ℎ and scheme 2ℎ at 𝑇 = 1 on the left subplot, and the 
evolution of mass error for both schemes with a time step of 𝛿𝑡 = 1𝐸 −4 on the right subplot. This demonstrates that, although exact 
mass conservation cannot be guaranteed, both scheme 1ℎ and scheme 2ℎ are capable of preserving mass conservation to the first 
and second order, respectively. Moreover, with a time step of 𝛿𝑡 = 1𝐸 − 4, the mass conservation accuracy for the first-order scheme 
can achieve a precision of 1𝐸 − 5, whereas for the second-order scheme, the precision reaches 1𝐸 − 10. This signifies a substantial 
degree of adherence to mass conservation principles by both schemes, underlining their capacity to uphold mass conservation with 
9

distinct levels of precision corresponding to their respective orders.
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Table 2

The temporal discretization error and convergence rates for scheme 2ℎ at 𝑇 = 1.

𝛿𝑡 ‖𝑒𝜌‖𝐿2 order ‖𝑒𝐮‖𝐿2 order ‖𝑒𝑝‖𝐿2 order

1/8 6.26E-03 - 6.48E-04 - 6.09E-03 -

1/16 1.77E-03 1.82 1.72E-04 1.92 1.47E-03 2.05

1/32 4.68E-04 1.92 4.40E-05 1.96 3.59E-04 2.03

1/64 1.20E-04 1.96 1.11E-05 1.98 8.90E-05 2.01

1/128 3.04E-05 1.98 2.80E-06 1.99 2.22E-05 2.00

Table 3

The spatial discretization error and convergence rates for scheme 2ℎ with 𝛿𝑡 =
1
8
ℎ3∕2 at 𝑇 = 0.1.

ℎ ‖𝑒𝜌‖𝐿2 order ‖𝑒𝐮‖𝐿2 order ‖𝑒𝑝‖𝐿2 order

1/16 4.57E-06 - 1.10E-07 - 5.55E-05 -

1/32 5.66E-07 3.01 9.93E-09 3.48 1.18E-05 2.23

1/64 7.07E-08 3.00 1.16E-09 3.10 2.84E-06 2.06

1/128 8.84E-09 3.00 1.45E-10 3.00 7.03E-07 2.01

1/256 1.11E-09 3.00 1.83E-11 2.98 1.75E-07 2.00

Fig. 1. Left: mass error and convergence rates for scheme 1ℎ and scheme 2ℎ at 𝑇 = 1. Right: the evolution of mass error for scheme 1ℎ and scheme 2ℎ with 𝛿𝑡 = 1𝐸−4.

Table 4

Physical parameters for rising bubble test.

Parameter Air Water Unit (MKS)

Density (𝜌) 1.161 995.65 kg∕m3

Viscosity (𝜈) 0.0000186 0.0007977 kg∕ms

4.2. Rising bubbles

In this subsection, we conduct a simulation of a bubble rising in water to validate the performance of our numerical scheme. This 
problem has been extensively studied by many researchers in a two-dimensional rectangular domain. The physical parameters used 
in our simulation are listed in Table 4, and they are the same as those used in [28].

We use the finite element space of 
(
𝑄2,𝑄2,𝑄1) for (𝜌, 𝐮, 𝑝) in the simulation. Since air and water have different viscosities, we 

replace the viscous term −𝜈𝛥𝐮 with −∇ ⋅ (𝜈(𝜌)∇𝐮) where

𝜈(𝜌) =
𝜌− 𝜌𝑎𝑖𝑟+𝜌𝑤𝑎𝑡𝑒𝑟

2
𝜌𝑎𝑖𝑟 − 𝜌𝑤𝑎𝑡𝑒𝑟

(
𝜈𝑎𝑖𝑟 − 𝜈𝑤𝑎𝑡𝑒𝑟

)
+
𝜈𝑎𝑖𝑟 + 𝜈𝑤𝑎𝑡𝑒𝑟

2
. (4.65)

To approximate the initial discontinuous density at the air-water interface, we use the following initial discontinuous density

𝜌(𝐱, 𝑡 = 0) = 𝜌air +
(𝜌water − 𝜌air

2

)
×
(
1 + tanh

(
𝑐 − 0.0025
0.00025

))
, (4.66)

where 𝑐 =
√
𝑥21 + (𝑥2 − 0.0075)2 is the distance from the center of the bubble to a point.

The initial velocity is set to be zero, and the computational domain is [−0.01𝑚, 0.01𝑚] × [0, 0.03𝑚]. Initially, an air bubble with a 
radius of 0.0025𝑚 is placed in the lower middle of the domain filled with water. In the experiment, the gravitational term is defined 
10

as 𝐟 = (0, 𝜌𝑔)𝑇 , where 𝑔 = −9.80665𝑚∕𝑠2 represents the acceleration due to gravity.
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Fig. 2. First row: Numerical solution of air bubble rising in water at 𝑡 = 0.08 obtained by triangle mesh. Second row: numerical solution of air bubble rising in water at 
𝑡 = 0.08 obtained by rectangle mesh. Time step: 𝛿𝑡 = 1𝐸 − 4; spatial mesh sizes: first column: ℎ = 0.01∕80, second column: ℎ = 0.01∕100, third column: ℎ = 0.01∕150; 
CFL-like number: first column: 𝛿𝑡∕ℎ = 0.8, second column: 𝛿𝑡∕ℎ = 1, third column: 𝛿𝑡∕ℎ = 1.5.

First, we use Scheme 1ℎ with a fixed time step of 𝛿𝑡 = 1𝐸 − 4. The results obtained with triangular and rectangular meshes for 
different spatial mesh sizes are presented in Fig. 2. From the results, several observations can be made: (i) When the spatial mesh size is 
not sufficiently small, the results obtained with the triangular mesh are asymmetric, as shown in the first two subplots displayed in the 
first row of Fig. 2; the results obtained with the rectangular mesh are always symmetric, even when the spatial mesh size is not small. 
(ii) With a fixed time step, decreasing the spatial mesh size leads to a more pronounced breaking of the connection between the left 
and right sides of the upper part of the bubble. This phenomenon may be related to a CFL-like (Courant-Friedrichs-Lewy-like) number 
that is not sufficiently small, as can be more clearly observed in the second row of Fig. 2, where here the CFL-like number refers to the 
ratio of the time step size to the spatial step size, i.e. 𝛿𝑡∕ℎ. Overall, the numerical simulations suggest that the rectangular mesh is a 
more robust choice for solving the variable-density Navier-Stokes equations, as it yields more symmetric and stable results compared 
to the triangular mesh. Furthermore, the results indicate that the choice of CFL-like number is crucial, as demonstrated in Fig. 3, 
which depicts the results obtained with different CFL-like numbers: 3.2, 0.8, 0.75, 0.256, respectively. It can be observed that a smaller 
CFL-like number results in a clearer interface between the air bubble and water. Moreover, comparing the first subplot to the second 
subplot of Fig. 3 and the third subplot of second row of Fig. 2 to the third subplot of Fig. 3, it is evident that a smaller CFL-like number 
leads to a narrower gap between the left and right sides of the upper part of the bubble. These observations highlight the importance 
of choosing an appropriate CFL-like number to ensure accurate and stable simulations of variable-density Navier-Stokes equations.

The evolution of modified energy and 𝜉𝑛+1 = 𝜂𝑛+1√
𝐸1(𝜌𝑛+1ℎ )+𝐶0

obtained using different time step sizes in the first row of Fig. 4. It 

can be observed that the energy decay becomes slower as the time step size decreases. Additionally, for smaller time step size, 𝜉𝑛+1
approaches 1, indicating a more accurate approximation of numerical solution. The modified energy and original energy evolution 
with ℎ = 0.01∕150 and 𝛿𝑡 = 2.5𝐸 − 4 are shown in the left subplot of second row of Fig. 4. It is clear that in the initial stage, the 
modified energy decreases while a slight increase is observed in the original energy. Additionally, the right subplot of the second row 
in Fig. 4 displays the errors between the modified energy and original energy at 𝑡 = 0.005. These errors, being of first-order, suggest 
11

that the differences between the modified energy and original energy are insignificant.
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Fig. 3. Numerical solution of air bubble rising in water at 𝑡 = 0.08. First: 𝛿𝑡 = 4𝐸 − 4, ℎ = 0.01∕80, 𝛿𝑡∕ℎ = 3.2; second: 𝛿𝑡 = 1𝐸 − 4, ℎ = 0.01∕80, 𝛿𝑡∕ℎ = 0.8; third: 
𝛿𝑡 = 5𝐸 − 5, ℎ = 0.01∕150, 𝛿𝑡∕ℎ = 0.75; fourth: 𝛿𝑡 = 1𝐸 − 5, ℎ = 0.01∕256, 𝛿𝑡∕ℎ = 0.256.

Fig. 4. Rising bubble. First row: the evolution of modified energy (left) and 𝜉 (right) with ℎ = 0.01∕150. Second row: the evolution of modified energy and original 
energy with ℎ = 0.01∕150, 𝛿𝑡 = 2.5𝐸 − 5 (left); the errors of modified energy and original energy at 𝑡 = 0.005 with ℎ = 0.01∕150 (right).

Next, we elaborate on the necessity of using certain techniques in Scheme 1ℎ. The spatial discretization of density, when conducted 
without the implementation of upwind schemes, is represented by the following equation:(

𝜎𝑛+1
ℎ

− 𝜎𝑛
ℎ

𝛿𝑡
,𝑤ℎ

)
+

(∑
𝑒

(
𝑃RT
ℎ

𝐮𝑛
ℎ
, �𝜎𝑛+1

ℎ
𝑤ℎ�

)
𝑒
−
(
𝜎𝑛+1
ℎ
𝑃RT
ℎ

𝐮𝑛
ℎ
,∇𝑤ℎ

))
= 0. (4.67)

The outcomes of this approach, as illustrated in Fig. 5, indicate that oscillations emerge at the interface by 𝑡 = 0.01. These oscilla-

tions worsen by 𝑡 = 0.013, resulting in the inaccurate deformation of the air bubble. This highlights the importance of using upwind 
schemes. The results of the velocity field for the transport equation without using Raviart-Thomas projection are shown in Fig. 6, 
where oscillations are observed at the interface of the lower half of the air bubble at 𝑡 = 0.03, and the oscillations become more severe 
over time. This emphasizes the significance of using Raviart-Thomas projection for the velocity field. In particular, if we use a usual 
12

(without bound preserving) scheme
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Fig. 5. Numerical solution of air bubble rising in water at 𝑡 = 0.005,0.01,0.013 with spatial mesh of 0.01∕150 and time step of 𝛿𝑡 = 5𝐸 − 5 but without upwind.

Fig. 6. Numerical solution of air bubble rising in water at 𝑡 = 0.02, 0.03, 0.04 with spatial mesh size of 0.01∕150 and time step of 𝛿𝑡 = 5𝐸 − 5 but without projecting 
velocity fields to Raviart-Thomas element space in transport equation.

Fig. 7. Numerical solution of air bubble rising in water at 𝑡 = 0.03, 0.05, 0.057 with spatial mesh size of 0.01∕150 and time step of 𝛿𝑡 = 5𝐸 − 5 but without preserving 
the lower bound of density. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)(

𝜌𝑛+1
ℎ

− 𝜌𝑛
ℎ

𝛿𝑡
,𝑤ℎ

)
+

(∑
𝑒

(
𝜌𝑛+1
ℎ
𝑃RT
ℎ

𝐮𝑛
ℎ
, �𝑤ℎ�

)
𝑒
−
(
𝜌𝑛+1
ℎ
𝑃RT
ℎ

𝐮𝑛
ℎ
,∇𝑤ℎ

))
= 0, (4.68)

instead of scheme (3.44)-(3.45), the lower bound of density can not be preserved as demonstrated in Fig. 7. At 𝑡 = 0.057, the density 
field exhibits negative values with a minimum of 𝜌𝑚𝑖𝑛 = −0.0158, as indicated by the yellow data point in the third subplot, and 
consequently the simulation breaks down.

In Fig. 8, we present snapshots of the air bubble at nine different times ranging from 0 to 0.8 s. These results are in agreement 
13

with those reported in [28]. However, minor discrepancies between our results and theirs may be attributed to the fact that their 
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Fig. 8. Numerical solution of air bubble rising in water at 𝑡 = 0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08. 𝛿𝑡 = 1𝐸 − 5, ℎ = 0.01∕256, 𝛿𝑡∕ℎ = 0.256.

computations employed a larger CFL-like number, which could result in a larger gap between the left and right sides of the upper 
part of the bubble.

We also performed simulation for the same problem using Scheme 2ℎ, the results are shown in Fig. 9. It can be observed that, 
compared to the first-order scheme, a much larger time step can be used to make the gaps on both sides of the bubble’s upper part 
almost invisible.

Simulating the rising bubble in water is a widely studied problem in fluid dynamics, and it serves as an important benchmark 
for validating the accuracy and stability of numerical methods. By comparing our results with those obtained from other numerical 
14

methods, we can confirm the effectiveness and reliability of the proposed numerical schemes.



Journal of Computational Physics 517 (2024) 113365B. Li, J. Shen, Z. Yang et al.

Fig. 9. Numerical solution of air bubble rising in water at 𝑡 = 0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08 with 𝛿𝑡 = 1.25𝐸 − 4, ℎ = 0.01∕256 and 𝛿𝑡∕ℎ = 3.2.

4.3. Rayleigh-Taylor instability

We further demonstrate the method’s performance on another benchmark problem, specifically the development of a Rayleigh-

Taylor instability in the viscous regime. This problem involves two layers of fluid initially at rest in the rectangular domain 𝛺 =
(−1∕2, 1∕2) × (−2, 2), where the transition between the two fluids is regularized using the following equation:

𝜌𝑚 + 𝜌𝑀 𝜌𝑀 − 𝜌𝑚
(
𝑦− 𝑠(𝑥)

)

15

𝜌(𝑥, 𝑦, 𝑡 = 0) =
2

+
2

tanh
0.01

, (4.69)
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Fig. 10. Numerical solution of Rayleigh-Taylor instability with 𝐴𝑡 = 0.5, 𝜈 = 0.001 at 𝑡 = 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1. Time step: 𝛿𝑡 = 0.01, spatial mesh: ℎ = 1∕60, 
𝛿𝑡∕ℎ = 0.6.

here, 𝑠(𝑥) = −0.1 cos(2𝜋𝑥) represents the initial position of the perturbed interface. With the heavy fluid above, the density of the 
two fluids is 3 and 1, respectively, resulting in an Atwood number of 0.5 according to Tryggvason’s definition [32]:

𝐴𝑡 =
𝜌0
𝑀

− 𝜌0𝑚
𝜌0
𝑀

+ 𝜌0𝑚
, (4.70)

where 𝜌0
𝑀

∶= max𝐱∈𝛺 𝜌0(𝐱). The no-slip condition is enforced at the top and bottom walls, while periodic condition is imposed on 
the two vertical sides. In the experiment, the force due to gravity is represented by 𝐟 = (0, 𝜌𝑔)𝑇 , with 𝑔 = −9.80665𝑚∕𝑠2, reflecting 
the standard acceleration due to Earth’s gravity. Scheme 1ℎ is used in the simulation below.

We perform simulations with a Reynolds number of 𝜈 = 0.001. The results obtained with different time and space step sizes 
are shown in Fig. 10, Fig. 11 and Fig. 12. In Fig. 10, we show the simulation results obtained with a time step size of 0.01
and a spatial resolution of 1∕60. It can be seen that the simulated interface between the two fluids is relatively smooth, and the 
16

evolution of the instability is captured with reasonable accuracy. In Fig. 11 and Fig. 12, we reduce the time step size and the 
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Fig. 11. Numerical solution of Rayleigh-Taylor instability with 𝐴𝑡 = 0.5, 𝜈 = 0.001 at 𝑡 = 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1. Time step: 𝛿𝑡 = 0.005, spatial mesh: ℎ = 1∕100, 
𝛿𝑡∕ℎ = 0.5.

spatial mesh size. These figures reveal that as the time and space step sizes become smaller, the interface between the two flu-

ids becomes clearer, and more details of the evolution can be observed. This indicates that the proposed method is capable of 
accurately resolving the complex dynamics of the Rayleigh-Taylor instability in the viscous regime, and the results obtained are 
reliable.

The evolution of the modified energy and 𝜉𝑛+1 under different time and space mesh sizes is shown in first row of Fig. 13. 
It can be observed that as the time step size becomes smaller, the energy decay becomes slower and 𝜉𝑛+1 approaches 1
more closely. The observed trends in the modified energy and 𝜉𝑛+1 support the conclusion that decreasing the time step 
size can lead to a more accurate and detailed representation of the flow field. In the left subplot of the second row of 
Fig. 13, the evolution of modified energy and original energy with ℎ = 1∕200 and 𝛿𝑡 = 0.001 is illustrated. It is evident 
that during the initial stage, the modified energy decreases while the original energy exhibits a slight increase. Further-

more, the errors of modified energy and original energy at 𝑡 = 0.1 are presented in the right subplot of the second row 
of Fig. 13. The first-order error indicates that the discrepancies between the modified energy and original energy are mi-
17

nor.
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Fig. 12. Numerical solution of Rayleigh-Taylor instability with 𝐴𝑡 = 0.5, 𝜈 = 0.001 at 𝑡 = 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1. Time step: 𝛿𝑡 = 0.0025, spatial mesh: ℎ = 1∕200, 
𝛿𝑡∕ℎ = 0.5.

To further assess the robustness of the algorithm at high Reynolds numbers, we solved the same problem using 𝜈 = 2𝐸 − 4. The 
results are presented in Fig. 14. By comparing the results in Fig. 12 and Fig. 14, it can be observed that as the Reynolds number 
increases, more details of the vortices become visible.

Fig. 15 depicts the time evolution of the density of a fluid with larger Atwood number 0.75, where the densities of the two 
fluids are 7 and 1. Based on the results presented in Fig. 12 and Fig. 15, we can observe similarities in the flow structure and 
global characteristics. Additionally, we have observed that the heavy fluid falls faster when the low Atwood number becomes 
larger.

To illustrate the capability of our model to describe the evolution of multiple fluid densities, we employ the initial density distri-

bution defined by:

1
(
𝑦− 0.5 − 𝑠(𝑥)

)
1

(
𝑦+ 0.5 − 𝑠(𝑥)

)
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𝜌(𝑥, 𝑦, 𝑡 = 0) =
2
tanh

0.01
+

2
tanh

0.01
+ 2,
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Fig. 13. Rayleigh-Taylor instability. First row: the evolution of modified energy (left) and 𝜉 (right) with ℎ = 1∕200. Second row: the evolution of modified energy and 
original energy with ℎ = 1∕200, 𝛿𝑡 = 0.001 (left); the errors of modified energy and original energy at 𝑡 = 0.1 with ℎ = 1∕200 (right).

where the fluid densities from top to bottom are set at 3, 2, and 1, respectively. The outcomes are summarized in Fig. 16. We 
performed the simulation using various time step sizes and spatial mesh sizes, and although not displayed here due to space 
constraints, it can be observed that smaller time and spatial steps yield more accurate fluid interfaces, confirming the reliabil-

ity of our numerical results. Throughout the evolution, several phenomena can be observed: (i) As time progresses, the heav-

ier fluid descends into the lighter fluid, and the interactions between fluids of differing densities lead to increasingly complex 
vortex structures; (ii) The fluid with a density of 2 forms vortices more rapidly than the fluid with a density of 3; (iii) Af-

ter a certain point, the shape of the density 3 fluid begins to be influenced by the shape of the density 2 fluid. These find-

ings highlight the scheme’s ability in accurately capturing the subtle dynamics of fluid interfaces under varying density condi-

tions.

4.4. Falling bubble

This numerical example investigates the evolution process of a heavy droplet passing through a light fluid and impact-

ing the planar surface of a denser fluid. The equations are rendered dimensionless using the following reference values: 
lower bound 𝜌𝑚 for density 𝜌, 𝑑 for length, and 

√
𝑑∕𝑔 for time, which sets the reference velocity as 

√
𝑑𝑔. In these di-

mensionless equations, the Reynolds number is defined by 𝑅𝑒 = 𝜌𝑚𝑑
3∕2𝑔1∕2

𝜈
, and the term for gravity is represented as 𝐟

𝜌𝑚𝑔
, 

i.e. 𝐟 = (0, − 𝜌

𝜌𝑚
)𝑇 . The computational domain is 𝛺 = [0, 𝑑] × [0, 2𝑑] with 𝑑 = 1, and the initial density interface takes the 

form

𝜌(𝑥, 𝑦, 𝑡 = 0) = 99
2

tanh( 0.2 − 𝑟
0.01

) + 99
2

tanh( 1 − 𝑦
0.01

) + 100,√
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where 𝑟 = (𝑥− 0.5)2 + (𝑦− 1.75)2.
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Fig. 14. Numerical solution of Rayleigh-Taylor instability with 𝐴𝑡 = 0.5, 𝜈 = 2𝐸−4 at 𝑡 = 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1. Time step: 𝛿𝑡 = 0.0025, spatial mesh: ℎ = 1∕200, 
𝛿𝑡∕ℎ = 0.5.

In the experiment, the fluid’s viscosity is assumed to be constant throughout the domain, with a Reynolds number of 𝑅𝑒 = 200. 
The computational domain is discretized into 100 ×200 cells. The outcomes are depicted in Fig. 17. These results are similar to those 
in [18]. The visualizations illustrate the droplet descending through a lighter fluid and coalescing with the fluid beneath. During 
descent, the droplet undergoes minor shape alterations due to the absence of surface tension. Upon impact with the interface, it 
merges with the denser fluid below, inducing surface waves.

5. Conclusion

We have proposed first- and second-order semi and fully discrete schemes for the Navier-Stokes equations with variable density. 
These schemes preserve lower density bounds without altering the structure of the transport equation or requiring additional opera-

tions. For spatial discretization, we have proposed to use an upwind discontinuous Galerkin method for the density, and continuous 
finite element spaces for the velocity and pressure. By projecting the velocity in the transport equation to Raviart-Thomas space, the 
20

proposed schemes eliminate the requirement of using divergence-free finite elements for the velocity equations, resulting in lower 
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Fig. 15. Numerical solution of Rayleigh-Taylor instability with 𝐴𝑡 = 0.75, 𝜈 = 0.001 at 𝑡 = 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85. Time step: 𝛿𝑡 = 0.0025, spatial mesh: 
ℎ = 1∕200, 𝛿𝑡∕ℎ = 0.5.

computational cost and easier implementation. We have established energy stability of these semi and fully discrete schemes in the 
presence of a gravity term.

To demonstrate the accuracy and efficiency of our proposed schemes, we have conducted convergence tests as well as the 
simulation of three benchmark problems: an air bubble rising in water, the evolution of Rayleigh-Taylor instability and falling 
bubble. The proposed schemes demonstrate excellent performance in accurately capturing the complex dynamics of these prob-

lems.
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Fig. 16. Numerical solution of Rayleigh-Taylor instability with densities set at 3, 2, 1 from top to bottom and 𝜈 = 0.001 at 𝑡 = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.375, 1.5. 
Time step: 𝛿𝑡 = 0.0025, spatial mesh: ℎ = 1∕200, 𝛿𝑡∕ℎ = 0.5.
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Fig. 17. Numerical solution of falling bubble at 𝑡 = 0,0.5,1,1.1,1.2,1.3. Time step: 𝛿𝑡 = 0.001, spatial mesh: ℎ = 1∕200, 𝛿𝑡∕ℎ = 0.2.
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