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Abstract In this paper, we develop a general framework for constructing higher-order, unconditionally energy-

decreasing exponential time differencing Runge-Kutta (ETDRK) methods applicable to a range of gradient flows.

Specifically, we identify conditions sufficient for ETDRK schemes to maintain the original energy dissipation. Our

analysis reveals that the widely-employed third- and fourth-order ETDRK schemes fail to meet these conditions.

To address this, we introduce new third-order ETDRK schemes, designed with appropriate stabilization, which

satisfy these conditions and thus guarantee the unconditional energy decay property. We conduct extensive

numerical experiments with these new schemes to verify their accuracy, stability, behavior under large time

steps, long-term evolution, and adaptive time-stepping strategy across various gradient flows. This study offers

the first framework to examine the unconditional energy stability of high-order ETDRK methods, and we are

optimistic that our framework will enable the development of ETDRK schemes beyond the third order that are

unconditionally energy stable.
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1 Introduction

We consider a class of gradient flows written in the following general form:

ut = G(Lu+ f(u)), (x, t) ∈ Ω× [0, T ], (1.1)

where Ω is a bounded domain in R
d (d = 1, 2, 3), T is a finite time, G is a nonpositive operator, and

L is a positive definite operator. The above system is energy dissipative with the corresponding energy

functional

E(u) =

∫
Ω

(
1

2
|L1/2u|2 + F (u)

)
dx, (1.2)
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where F satisfies that F ′ = f . This general form covers a wide range of gradient flows, such as the

Allen-Cahn equation [2], the Cahn-Hilliard equation, and the thin film model without slope selection also

known as the molecular beam epitaxy (MBE) model, the phase-field crystal models, etc.

Since these gradient flows involve strong nonlinearities and often high-order derivatives, it is difficult

to design an efficient time discretization scheme which is able to accurately approximate their dynamics

and steady states. In particular, it is challenging for numerical schemes to guarantee the energy decay

which is intrinsic to all of these models. Ample numerical evidence indicates that non-physical oscillations

may occur when the energy stability is violated. Furthermore, the establishment of unconditional energy

stability enables the creation of more efficient algorithmic designs, including the development of adaptive

time-stepping strategies, where the selection of time steps is solely governed by considerations of accuracy.

There have been a large number of studies concerning energy-stable schemes for gradient flows (see,

e.g., [11,12,15,19,21,24,27,28,33,34,36,38] and the references therein). In particular, the convex splitting

technique (see [31, 35]) is useful to preserve unconditional energy stability, but it leads to a nonlinear

scheme and is not easy to extend to more general cases. The invariant energy quadratization (IEQ)

method (see, e.g., [40, 41]) and the scalar auxiliary variable (SAV) method (see [6, 32]) lead to linear

schemes that can preserve different structures for a wide class of gradient flows. In particular, there

have been a large number of works based on SAV methods, including SAV-BDF schemes (see [5,20]) and

SAV-RK schemes (see [1, 37]). However, the energy stability achieved by the IEQ or SAV methods is

based on a modified energy, not the original energy. [13] also offers a framework introducing high-order

implicit-explicit Runge-Kutta schemes for (1.1) which unconditionally decreases energy with respect to

the original energy.

On the other hand, exponential time differencing Runge-Kutta (ETDRK) schemes offer many

advantages over multistep methods. In this paper, we consider ETDRK methods for (1.1). The key

idea of ETDRK schemes is to apply Duhamel’s principle

u(x, t) = eGL(t−t0)u(x, t0)− eGL(t−t0)

∫ t

t0

e−GL(s−t0)Gf(u(x, s))ds (1.3)

and approximate the implicit integral which contains the unknown f(u(x, s)) with an explicit RK method.

The concept of exponential integrators has a long-standing history, tracing its origins back to the 1960s.

There has been much literature related to using such methods to solve stiff problems, semilinear parabolic

problems or gradient flows (see [7,8,10,14,17]). However, ETDRK schemes are usually not energy stable.

It has been shown in [8,9] that some first-order ETDRK schemes can be energy stable. More recently, it

is shown in [14] that a second-order ETDRK method with proper stabilization is unconditionally energy

stable. A concrete third-order ETDRK scheme (see [3]) also provides a high-order solution for gradient

flows. However, the question of whether general high-order ETDRK can maintain the energy dissipation

property remains an open problem.

This paper aims to introduce a comprehensive framework for developing unconditionally energy-stable

ETDRK schemes tailored for various gradient flows. We have formulated a series of criteria for ensuring

the unconditional energy stability of ETDRK schemes of arbitrary order. Our investigations reveal

that the widely-employed third- and fourth-order ETDRK methods fall short of meeting these criteria.

In response, we have designed innovative third-order ETDRK schemes that adhere to these standards,

thereby achieving unconditional energy stability. To our knowledge, this work pioneers the establishment

of sufficient conditions for high-order ETDRK methods to attain unconditional energy stability. We

are optimistic that this foundational framework will pave the way for the creation of advanced ETDRK

schemes surpassing the third order in terms of unconditional energy stability.

The rest of this paper is organized as follows. In Section 2, we present some background knowledge,

and then state and prove our main theorem. In Section 3, we apply the main theorem to various known

ETDRK schemes and determine whether they are unconditionally energy-stable; in particular, we show

that the commonly used third- and fourth-order ETDRK schemes do not satisfy these conditions, and

we construct new third-order ETDRK schemes that satisfy these conditions and thus are unconditional

energy stable. In Section 4, we present ample numerical experiments to validate our new third-order
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schemes and study how large time steps affect the solutions, and how different time steps and stabilizers

influence the energy evolution. We also present an example with adaptive time stepping to show the

application of this scheme. Some concluding remarks are given in Section 5.

2 Energy decreasing ETDRK methods for gradient flows

In this section, we first introduce some basic knowledge of gradient flows, phase field models, convex

splitting, and the ETDRK methods. Then we prove our main theorem, i.e., arbitrary ETDRK schemes

are unconditionally energy stable as long as the conditions are satisfied.

2.1 Phase-field models

We consider the general form of gradient flows in a Hilbert space H:

ut = G(Lu+ f(u)), (x, t) ∈ Ω× [0, T ], (2.1)

where G is a nonpositive operator, L is a positive definite operator, and f(u) = F ′(u), where F (u) is

a nonlinear functional. In the following text, we denote the inner product by (·, ·). Taking the inner

product of (2.1) with Lu+ f(u), we find the energy dissipation law

d

dt
E(u) = (G(Lu+ f(u)),Lu+ f(u)) � 0, (2.2)

where the free energy E(u) is given by

E(u) =

∫
Ω

(
1

2
(Lu, u) + F (u)

)
dx. (2.3)

Some typical examples are provided below:

• the Allen-Cahn equation, G = −I, L = −ε2Δ, f(u) = u3 − u, and F (u) = 1
4 (u

2 − 1)2;

• the Cahn-Hilliard equation, G = Δ, L = −ε2Δ, f(u) = u3 − u, and F (u) = 1
4 (u

2 − 1)2;

• the MBE model without slope selection, G = −I, L = −ε2Δ2 but f(u) should be replaced by

f(∇u) = −∇ ·
( ∇u

1 + |∇u|2
)
,

and correspondingly, F (∇u) = − 1
2 ln (|∇u|2 + 1);

• the phase field crystal equation, G = Δ, L = (Δ+ 1)2, f(u) = u3 − εu, and F (u) = 1
4 (u

2 − ε)2.

We assume that f is a Lipschitz continuous function with the Lipschitz constant CL, i.e., we have

‖f(u)− f(v)‖ � CL‖u− v‖, ∀u, v ∈ H. (2.4)

For the MBE model, the functions F and f depend only on ∇u, which is different from other examples.

The Lipschitz condition is satisfied in the sense

‖∂2
∇uF (∇u)‖2 � 1, (2.5)

which also bounds the growth of the nonlinear term.

Notice that for the Cahn-Hilliard equation and the phase field crystal model, f(u) does not naturally

satisfy the Lipschitz assumption on nonlinearity, but we can truncate f(u) to quadratic growth as

in [14,34] so as to satisfy the Lipschitz assumption. In practice such a modification never affects anything

because of the boundedness of their solutions (see [25, 26]), which offer solid analysis without Lipschitz

assumptions.

Consider the natural splitting of the energy E(u) = El − En with

El(u) =

∫
Ω

(
1

2
|L1/2u|2 + β

2
|u|2

)
dx,

En(u) =

∫
Ω

(
− F (u) +

β

2
|u|2

)
dx.

(2.6)
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From this perspective, the gradient flow can thus be written as

ut = G(Lu− g(u)), (2.7)

where L = βI + L and g = βI − f correspond to El and En, respectively. In the computation, Lu is

treated implicitly and g(u) is treated explicitly, which leads to linearly implicit schemes.

Here, β serves as a stabilization to enhance the dissipation of the linear part so as to bound the

Lipschitz growing nonlinear term in the analysis. In fact, such modification or stabilization is necessary

for the proof of energy decay, which is pointed out in the remark attached to the main theorem. However,

the stabilization may cause significant time delay phenomena if a low-order scheme is used or a large time

step is taken. We study the effect in detail for higher-order schemes in Section 4. On the other hand, the

stabilization is necessary to guarantee the maximum bound property (MBP) for Allen-Cahn equations

(see [8]). Besides, [32] provides numerical evidence to illustrate that the stabilization can significantly

improve the numerical performance.

2.2 ETDRK methods

The key idea of ETDRK is to consider Duhamel’s principle for the equation (2.7), i.e.,

u(x, t) = eGL(t−t0)u(x, t0)− eGL(t−t0)

∫ t

t0

e−GL(s−t0)Gg(u(x, s))ds, (2.8)

and approximate the implicit integral with a suitable quadrature formula. For example, assuming that

we have un, the approximate solution at time step n, we see that the simplest way to determine un+1 is

to substitute the function g(u) by a constant g(un) which leads to the first-order ETD (ETD1) scheme

un+1 = eτGLun + (I − eτGL)L−1g(un), (2.9)

where τ is the time step. For this scheme, the energy dissipation law and MBP for the Allen-Cahn

equation have been proved (see, e.g., [9]). The classical second-order ETDRK (ETDRK2) for the gradient

flow (1.1) reads

v = eτGLun + (I − eτGL)L−1g(un), (2.10)

un+1 = v − 1

τ
(eτGL − I − τGL)(GL)−2(Gg(v)−Gg(un)). (2.11)

It is shown in [14] that the above scheme is energy decreasing with a suitably large stabilization constant

β for the Allen-Cahn and Cahn-Hilliard equations.

In general, the ETDRK schemes take the following form [7]:

v1 = un,

vi = χi(τGL)un − τ

i−1∑
j=1

aij(τGL)Gg(vj), i = 2, . . . , s,

un+1 = χ(τGL)un −
s∑

j=1

bj(τGL)Gg(vj),

(2.12)

where χ(z) = ez, χi(z) = χ(ciz), and the coefficients aij and bj are constructed to equal to or approximate

exponential functions. For simplicity, we define a class of functions which will be frequently used

φ0(z) = ez, φk+1(z) =
φk(z)− φk(0)

z
with φk(0) = 1/k!. (2.13)
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The ETDRK schemes (2.12) could also be written in the Butcher tableau, although now its coefficients

are functions

c1 χ1(τGL)

c2 a21 χ2(τGL)

· · · · · · · · · · · ·
cs as1 · · · as,s−1 χs(τGL)

b1 b2 · · · bs χ(τGL)

. (2.14)

In order to preserve the equilibria, the coefficients of the method have to satisfy

s∑
j=1

bj(z) =
χ(z)− 1

z
,

s∑
j=1

aij(z) =
χi(z)− 1

z
. (2.15)

Taking the ETDRK2 as an example, we see that a21(z) = φ1(z) = (ez − 1)/z, b2(z) = φ2(z) = (ez

− z − 1)/z2, and b1 = φ1 − φ2, where z = τGL and its Butcher tableau reads

0 1

1 φ1(τGL) χ(τGL)

φ1(τGL)− φ2(τGL) φ2(τGL) χ(τGL)

. (2.16)

With the help of (2.15) and setting un+1 = vs+1, we can rewrite the solution (2.12) as

vi = un + τ
i−1∑
j=1

aij(τGL)(GLun −Gg(vj)), i = 2, . . . , s,

vs+1 = un + τ

s∑
j=1

bj(τGL)(GLun −Gg(vj)).

(2.17)

2.3 A general framework for energy stable ETDRK schemes

We present below a general framework for constructing energy-stable ETDRK schemes. We start with a

useful lemma whose proof is straightforward.

Lemma 2.1. Consider a positive-definite operator L = βI+L, and let f be an analytic function whose

domain includes the spectrum of L, i.e., the values {f(λi)}i∈N exist, where {λi}i∈N are the eigenvalues

of L. Then, the eigenvalues of f(L) are {f(λi)}i∈N . Furthermore, if f is a positive function, then f(L)

is also a positive-definite operator.

Hereafter, we say a matrix A is positive-definite if the eigenvalues of its symmetrizer (A + AT)/2 are

all positive.

Theorem 2.2. Consider the gradient flow

ut = G(Lu+ f(u)), (x, t) ∈ Ω× [0, T ], (2.18)

where G is a negative operator, L is a sectorial operator that commutes with G, and f is a Lipschitz

continuous function with the Lipschitz constant CL. The ETDRK schemes (2.12) with the stabilizer

β � CL unconditionally decreases the energy as long as the following determinant

D(z) = zEL + P−1EL − z

2
I (2.19)

is positive-definite for all negative z ∈ R, where I is the identity operator, EL = (1i�j)s×s is the lower
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triangular matrix with all nonzero entries equal to 1, and

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a21

a31 a32
...

...
. . .

as1 as2 · · · as(s−1)

b1 b2 · · · bs−1 bs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.20)

where aij and bi are given in (2.14).

Proof. We first compute the difference in the energy and derive a key inequality.

Since the function f is Lipschitz continuous, given any v and u, we have

(F (v)− F (u), 1) � (v − u, f(u)) +
CL

2
(v − u, v − u)

= −(v − u, g(u)) + β(v − u, u) +
CL

2
(v − u, v − u). (2.21)

On the other hand,

1

2

(∫
Ω

|L1/2v|2 − |L1/2u|2dx
)

=
1

2
((v,Lv)− (u,Lu))

= (v − u,Lv)− 1

2
(v − u,L(v − u))

= (v − u, Lv)− β(v − u, v)− 1

2
(v − u,L(v − u)), (2.22)

where we used the identity

[a, a]− [b, b] = 2[a− b, a]− [a− b, a− b]

which is valid for all a, b, and any bilinear form [·, ·]. Therefore, combining these two parts, we derive

E(v)− E(u) � (v − u, Lv − g(u))− 1

2
(v − u, L(v − u))− β − CL

2
(v − u, v − u). (2.23)

This vital inequality holds with the Lipschitz condition, and if we take β � CL, the second term is

naturally non-positive.

Now we focus on the ETDRK scheme (2.17), the first line of which is v1 = un, and the rest can be

rewritten as the following system:⎛
⎜⎜⎜⎜⎜⎝

v2 − v1

v3 − v1
...

vs+1 − v1

⎞
⎟⎟⎟⎟⎟⎠ = τP

⎛
⎜⎜⎜⎜⎜⎝

G(Lv1 − g(v1))

G(Lv1 − g(v2))
...

G(Lv1 − g(vs))

⎞
⎟⎟⎟⎟⎟⎠ , (2.24)

which is equivalent to⎛
⎜⎜⎜⎜⎜⎝

Lv1 − g(v1)

Lv1 − g(v2)
...

Lv1 − g(vs)

⎞
⎟⎟⎟⎟⎟⎠ =

1

τ
P−1

⎛
⎜⎜⎜⎜⎜⎝

G−1(v2 − v1)

G−1(v3 − v1)
...

G−1(vs+1 − v1)

⎞
⎟⎟⎟⎟⎟⎠ =

1

τ
P−1EL

⎛
⎜⎜⎜⎜⎜⎝

G−1(v2 − v1)

G−1(v3 − v2)
...

G−1(vs+1 − vs)

⎞
⎟⎟⎟⎟⎟⎠ . (2.25)

Therefore,

E(un+1)− E(un)
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=

s∑
k=1

(E(vk+1)− E(vk))

�
s∑

k=1

(vk+1 − vk, Lvk+1 − g(vk))− 1

2

s∑
k=1

(vk+1 − vk, L(vk+1 − vk))− β − CL

2

s∑
k=1

‖vk+1 − vk‖2

=
s∑

k=1

((vk+1 − vk, Lvk+1 − Lv1) + (vk+1 − vk, Lv1 − g(vk)))

− 1

2

s∑
k=1

(vk+1 − vk, L(vk+1 − vk))− β − CL

2

s∑
k=1

‖vk+1 − vk‖2

=
s∑

k=1

((
vk+1 − vk,

1

τ
G−1(τGL)

k∑
j=1

(vj+1 − vj)

)
+ (vk+1 − vk, Lv1 − g(vk))

)

−1

2

s∑
k=1

(
vk+1 − vk,

1

τ
G−1(τGL)(vk+1 − vk)

)
− β − CL

2

s∑
k=1

‖vk+1 − vk‖2 (using (2.25))

=
1

τ

s∑
k=1

k∑
j=1

((vk+1 − vk, G
−1(τGL)(vj+1 − vj)) + (vk+1 − vk, G

−1(P−1EL)kj(vj+1 − vj)))

− 1

2τ

s∑
k=1

(vk+1 − vk, G
−1(τGL)(vk+1 − vk))− β − CL

2

s∑
k=1

‖vk+1 − vk‖2

=
1

τ

s∑
k,j=1

(vk+1 − vk, G
−1Dkj(τGL)(vj+1 − vj))− β − CL

2

s∑
k=1

‖vk+1 − vk‖2, (2.26)

where D(z) = zEL+P−1EL− z
2I with z = τGL. Since G is a negative operator and β � CL, the discrete

energy unconditionally decreases if D(z) is positive-definite for all negative z ∈ R.

Remark 2.3. For the MBE model, recall that the nonlinear term is Lipschitz continuous as a function

of ∇u, and meanwhile, the convex splitting of the energy is also different (see [23, 39] for more details).

However, all the analyses in the proof can be carried out in a similar way. To keep the presentation short,

we omit the proof.

Remark 2.4. The inequality (2.23) in the proof plays a very important role. It is the only place where

we apply the Lipschitz condition. Alternatively, we can also replace the Lipschitz condition with a convex

splitting approach since

E(v)− E(u) �
(
v − u,

δEl

δv
(v)− δEn

δu
(u)

)
= (v − u,Lv + f(u))

= (v − u, Lv − g(u)). (2.27)

The determinant of this version is slightly different, while the rest of the proof is the same.

Lemma 2.5. The positive-definiteness of 1
2 (D +DT) is equivalent to the positive-definiteness of

D′ = zPEAP
T + ELP

T + PET
L ,

where EA is the matrix of all ones.

Proof. Notice that

EL + ET
L = EA + I

and

P (D +DT)PT = zP (EL + ET
L − I)PT + ELP

T + PET
L = D′.

This completes the proof.
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Remark 2.6. D′ is already symmetric and helps us in the understanding and subsequent proof

regarding positive-definiteness.

3 Examples of energy decreasing ETDRK schemes

In this section, we consider some examples of ETDRK methods up to order four.

We first recall

φ0(z) = ez, φk+1 =
φk(z)− φk(0)

z
, φk(0) =

1

k!
. (3.1)

We also define φi,j(z) = φi(cjz) for simplicity.

3.1 The first-order ETD scheme

We start with a very simple ETD1 scheme

un+1 = eτGLun + (I − eτGL)L−1g(un), (3.2)

whose Butcher tableau reads
0 0

φ1(τGL)
. (3.3)

Corollary 3.1. The first-order ETD scheme unconditionally decreases the discrete energy.

Proof. The only element in P is b1 = φ1, whence the determinant

D(z) = z + 1/φ1(z)− z/2 = zez/(ez − 1)− z/2.

Therefore, D � 0 always holds for z � 0. Theorem 2.2 guarantees that the discrete energy of the ETD1

solution unconditionally decreases.

3.2 The Second-order ETDRK scheme

In [14], it has been proved that the following ETDRK2 scheme is unconditionally energy stable, while

here we could make use of the framework to obtain the same result. In fact, the estimate here is finer

than the result in [14].

We consider the following ETDRK2 scheme:

v = eτGLun + (I − eτGL)L−1g(un), (3.4)

un+1 = v − 1

τ
(eτGL − I − τGL)(GL)−2(Gg(v)−Gg(un)). (3.5)

The Butcher tableau reads
0 0

1 φ1

φ1 − φ2 φ2

. (3.6)

Corollary 3.2. The second-order ETDRK scheme unconditionally decreases the discrete energy.

Proof. According to the Butcher tableau, we have

P =

(
φ1 0

φ1 − φ2 φ2

)
, P−1 =

(
1/φ1 0

(φ2 − φ1)/(φ1φ2) 1/φ2

)
,

whence the determinant reads

D(z) =

(
z + 1/φ1 0

z + 1/φ1 z + 1/φ2

)
− z

2
I2 = (z + 1/φ1)EL +

(
0 0

0 1/φ2 − 1/φ1

)
− z

2
I2. (3.7)

The first term is positive-definite since (z + 1/φ1) is positive and EL is positive-definite, the second

term is also non-negative-definite because φ1 > φ2 > 0, and the third term is obviously positive-definite.

Therefore, D is positive-definite, and the ETDRK2 scheme is unconditionally energy stable.
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3.3 Third-order ETDRK schemes

In general, third-order ETDRK schemes need to satisfy the following order conditions:

Order Conditions

1 ψ1 = 0

2 ψ2 = 0

2 ψ1,i = 0

3 ψ3 = 0

3
∑s

i=1 biJψ2,i = 0

where

ψi(z) = φi(z)−
s∑

k=1

bkc
j−1
k /(j − 1)!, ψi,j = φic

i
j −

j−1∑
k=1

ajkc
i−1
k /(i− 1)!, (3.8)

and J denotes arbitrary bounded operators. In particular, the classical ETDRK3 scheme below from Cox

and Matthews [7] does not satisfy the conditions of our theorem (see Figure 1), so it is not unconditionally

energy decreasing. It holds that

0
1
2

1
2φ1,2

1 −φ1,3 2φ1,3

4φ3 − 3φ2 + φ1 −8φ3 + 4φ2 4φ3 − φ2

. (3.9)

On the other hand, all the possible types of three-stage third-order ETDRK schemes are listed in [17,18].

In fact, many of them with suitable coefficients could satisfy the requirement of our theorem, and two of

them are described with the Butcher tableau below:

0

1 φ1

2
3

2
3φ1,3 − 4

9φ2,3
4
9φ2,3

3
4φ1 − φ2 φ2 − 1

2φ1
3
4φ1

(3.10)
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Figure 1 (Color online) Eigenvalues of 1
2
(D +DT) for the three ETDRK3 schemes
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and
0
4
9

4
9φ1,2

2
3

2
3φ1,3 − φ2,3 φ2,3

φ1 − 3
2φ2 0 3

2φ2

. (3.11)

To begin with, we first present numerical evidences. We plot in Figure 1 the smallest eigenvalues of
1
2 (D + DT) for the three schemes above, and we observe that the smallest eigenvalues of (3.10) and

(3.11) are positive, indicating that the conditions of our theorem are satisfied. In contrast, the smallest

eigenvalues for the scheme (3.9) become negative when z approaches zero, indicating that the conditions

of our theorem are violated. To rigorously show that the above two ETDRK schemes decrease the energy,

we only need to prove the positive-definiteness of D′ for the above schemes, which could be verified by

checking all the leading principal minors. Here, we want to point out that it does not necessarily mean

that schemes which violate the conditions are not energy dissipative since in our theorem they are solely

sufficient conditions.

Proposition 3.3. For the schemes (3.10) and (3.11), the determinants of all the leading principal

minors of D′ are positive, and thus D′ is positive definite. Thus, the schemes (3.10) and (3.11)

unconditionally decrease the energy for the general gradient flow (2.7).

Proof. According to (3.10), we derive the expressions for the determinants of leading principal minors

as follows

Det(D′
1×1) = D′

11 =
ez − 1

z
> 0,

Det(D′
2×2) =

1

9z4
(−9e4z/3 + 18e2z/3 + 6z − 6ze2z/3 − 18ze5z/3 + 18ze7z/3 − 9z2e2z − 9z2e4z/3

+ 6z2e5z/3 + 8z2 − 9),

Det(D′) =
1

36z6
(252z + 162e2z − 162e2z/3 + 324e5z/3 − 162e8z/3 − 324ez + 99ze2z + 54ze3z

− 81ze4z − 180ze2z/3 − 45ze4z/3 + 378ze5z/3 + 54ze7z/3 − 468ze8z/3 − 9ze10z/3

+ 270ze11z/3 − 72z2ez + 78z2e2z − 18z2e3z + 83z3e2z + 6z2e2z/3 − 54z2e4z/3

+ 288z2e5z/3 + 27z3e4z/3 + 18z3e5z/3 − 54z2e7z/3 − 240z2e8z/3 − 324zez + 66z2

− 20z3 + 162).

It can be verified by Figure 2 that for z with small absolute values,

z4Det(D′
2×2) � 0.2, z ∈ [−3,−1], Det(D′

2×2) � 0.2, ∀ z ∈ [−1, 0),

z6Det(D′) � 0.1, z ∈ [−6,−1], Det(D′) � 0.1, ∀ z ∈ [−1, 0),

where both z4Det(D′)2×2 and z6Det(D′) are smooth decreasing functions and both Det(D′)2×2 and

Det(D′) are smooth increasing functions.

For z with large scales, we use the non-exponential term to control the exponentially small term.

Therefore, we denote the non-exponential term in z4Det(D′
2×2) as P2 = (6z + 8z2 − 9)/9 and the

exponential term as

R2 = (−9e4z/3 + 18e2z/3 − 6ze2z/3 − 18ze5z/3 + 18ze7z/3 − 9z2e2z − 9z2e4z/3 + 6z2e5z/3)/9.

When z < −3,

P2(z) > P2(−3) = 6,

|R2| < (9e−4 + 18e−2 + 6× 3e−2 + 18× 3e−5 + 18× 3e−7 + 9× 32e−2 + 9× 32e−4 + 6× 32e−5)/9

< 2.03,
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Figure 2 (Color online) Positive-definiteness test: Determinants of leading principal minors

where we use β � |β| for every single term in R2. Thus, z
4Det(D′

2×2) � P2 − |R2| > 6− 2.03 > 0 for all

z < −3.

Similarly, we define the non-exponential term P3 and the exponential term R3 for z6Det(D), and for

z < −6, we have P3(z) > P3(−6) = 148.5 and |R3(z)| < 86, and thus z6Det(D′) > P3(z) − |R3(z)| > 0.

Combining all the above results, we have Det(D′
2×2) > 0, and Det(D′) > 0 for all negative z.

Therefore, all the determinants of leading principal minors are positive, i.e., D′ is positive-definite.
For the scheme (3.11), the proof is the same and we just present the determinants of leading principal

minors here:

Det(D′
1×1) = D′

11 =
e8z/9 − 1

z
> 0,

Det(D′
2×2) = − 1

16z4
(36z − 162e2z/3 + 81e4z/3 − 36ze2z/3

+ 72ze10z/9 − 72ze16z/9 + 16z2e4z/3 + 16z2e8z/9 + 16z2e10z/9 − 12z2 + 81),

Det(D′) = − 1

32z5
(22e2z − 71z + 288e2z/3 − 130e4z/3 − 216e5z/3 + 80e7z/3 − 72e8z/3 + 50e10z/3

+ 136ez + 5ze2z + 63ze2z/3 + 16ze4z/3 − 86ze5z/3 + 4ze7z/3 + 23ze8z/3 − 20ze10z/3

− 128ze10z/9 − 28ze13z/9 + 144ze16z/9 − 4ze19z/9 + 172ze22z/9 − 156ze28z/9 − 4z2ez

− 50z2e2z − 30z2e4z/3 + 8z2e5z/3 − 4z2e7z/3 + 56z2e8z/3 + 2z2e10z/3 − 30z2e8z/9

− 28z2e10z/9 − 8z2e13z/9 + 12z2e17z/9 + 8z2e19z/9 + 40z2e22z/9 + 18z2e26z/9

− 12z2e28z/9 + 66zez + 22z2 − 158).

This completes the proof.

Since the scheme (3.10) has the largest positive smallest eigenvalue according to the following Figure 1,

we use it to represent energy stable ETDRK3 for numerical tests in Section 4.

3.4 Fourth-order ETDRK schemes

In general, fourth-order ETDRK schemes need to satisfy four more order conditions:

Order Conditions

4 ψ4 = 0

4
∑s

i=1 biJψ3,i = 0

4
∑s

i=1 biJ
∑i−1

j=2 aijJψ2,j = 0

4
∑s

i=1 biciKψ2,i = 0
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Figure 3 (Color online) Eigenvalues of ETDRK4 schemes from Cox and Mathhews [7] and Krogstad [22]

where

ψi(z) = φi(z)−
s∑

k=1

bkc
j−1
k /(j − 1)!, ψi,j = φic

i
j −

j−1∑
k=1

ajkc
i−1
k /(i− 1)!,

and J and K denote arbitrary bounded operators (see, for more details, [18]). These fourth-order

conditions are more complicated than previous third-order conditions so that it is more difficult to

construct fourth-order ETDRK schemes. One of the most used ETDRK4 schemes is from Cox and

Matthews [7]:

0
1
2

1
2φ1,2

1
2 0 1

2φ1,3

1 1
2φ1,3(φ0,3 − 1) 0 φ1,3

φ1 − 3φ2 + 4φ3 2φ2 − 4φ3 2φ2 − 4φ3 4φ3 − φ2

. (3.12)

The other is given by Krogstad [22]:

0
1
2

1
2φ1,2

1
2

1
2φ1,3 − φ2,3 φ2,3

1 φ1,4 − 2φ2,4 0 2φ2,4

φ1 − 3φ2 + 4φ3 2φ2 − 4φ3 2φ2 − 4φ3 4φ3 − φ2

. (3.13)

We plot in Figure 3 the smallest eigenvalues of 1
2 (D+DT) for the two schemes above, the results clearly

indicate that the above two schemes do not satisfy our conditions for energy stability. Moreover, we

checked all the existing fourth-order ETDRK schemes and also searched from a wide family of four-stage

and five-stage fourth-order ETDRK methods, but none of them satisfies the requirement of our theorem.

Therefore, the existence of energy-stable ETDRK4 schemes is still an open problem.

4 Numerical experiments

In this section, we carry out some numerical experiments to illustrate the convergence and energy decay

property of our new ETDRK schemes for different phase-field models. We first verify the temporal

convergence rates using smooth initial data for the Allen-Cahn and Cahn-Hilliard equations. Next, we

study the behavior with large time steps for the Allen-Cahn, Cahn-Hilliard, and phase field crystal
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equations. Then, we present energy curves for different time steps and stabilization constants to observe

their influence. Finally, we present an adaptive time-stepping strategy that takes advantage of the

unconditional energy stability.

In all the simulations, we consider models with periodic conditions and use a Fourier-spectral method in

space with a sufficiently fine mesh so that the spatial discretization errors can be ignored compared with

temporal discretization errors. The ETDRK3 scheme (3.10) is used if not specified otherwise. Besides, we

also consider a truncated double-well potential F̃ (u) so that it naturally satisfies the Lipschitz condition.

More precisely, for a sufficiently large M (M = 2 is enough for cases used in this paper), we replace

F (u) = 1
4 (u

2 − 1)2 by

F̃ (u) =

⎧⎪⎪⎨
⎪⎪⎩

3M2 − 1

2
u2 − 2sgn(u)M3u+

1

4
(3M4 + 1), |u| > M,

1

4
(u2 − 1)2, |u| � M,

and f(u) = u3 − u by

f̃(u) = F̃ ′(u) =

{
(3M2 − 1)u− 2sgn(u)M3, |u| > M,

u3 − u, |u| � M.

In fact, the maximum norm of numerical solutions never exceeds the bound M so this replacement does

not affect the properties of numerical solutions.

4.1 Convergence tests

We solve the Allen-Cahn and Cahn-Hilliard equations in Ω = (0, 2π) × (0, 2π) with the smooth initial

data u0 = 0.5 sinx sin y. To compute the errors and the convergence rate, we take the number of grid

points N = 128 and the interfacial parameter ε = 0.5 and set the final time T = 0.32. With these

settings, we compute the numerical solutions with various time steps τ = 0.01/2k with k = 0, 1, . . . , 4 and

calculate the relative errors to get the convergence rate. The results for the Allen-Cahn and Cahn-Hilliard

equations are listed in Tables 1 and 2, respectively. In both cases, desired convergence rates are observed.

Table 1 ETDRK3 errors and convergence rates for the Allen-Cahn equation

τ = 0.01 L∞ err Rate L2 err Rate

τ 2.6852E−08 − 2.0736E−09 −
τ/2 3.4044E−09 2.9795 2.6291E−10 2.9795

τ/4 4.2863E−10 2.9896 3.3101E−11 2.9896

τ/8 5.3815E−11 2.9936 4.1557E−12 2.9937

τ/16 6.7815E−12 2.9883 5.2341E−13 2.9891

Table 2 ETDRK3 errors and convergence rates for the Cahn-Hilliard equation

τ = 0.01 L∞ err Rate L2 err Rate

τ 4.2646E−07 − 3.7881E−08 −
τ/2 5.3484E−08 2.9952 4.8765E−09 2.9576

τ/4 6.6767E−09 3.0019 6.1872E−10 2.9785

τ/8 8.3316E−10 3.0025 7.7913E−11 2.9894

τ/16 1.0392E−10 3.0032 9.7637E−12 2.9964
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4.2 Large time step tests

In this subsection, we study the accuracy of solutions with large time steps. We set N = 128, T = 8,

ε = 0.1 for the Allen-Cahn equation, and ε = 0.5 for the Cahn-Hilliard equation. We plot in Figure 4 the

relation between the error and the time steps τ = 21−k for k = 0, 1, . . . , 7 and observe that the solutions

with large time steps still maintain good accuracy.

Next, we simulate the phase field crystal model with N = 256, ε = 0.025, and β = 3 in Ω = (0, 32)

× (0, 32). Using both ETDRK2 and ETDRK3 with the initial condition

u0 = sin

(
πx

16

)
sin

(
πx

16

)
,

we compute the solution at T = 1 with τ = 2−k for k = 0, 1, . . . , 11. The results are plotted in Figure 5.

We observe that both ETDRK schemes work well with large time steps. More precisely, with τ = 0.1,

the errors of ETDRK3 and ETDRK2 are about O(10−4) and O(10−3), respectively.
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Figure 4 (Color online) Error-τ figure for the AC (a) and CH (b)
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4.3 Energy curves with different time steps and stabilization constants

Now we study how energy curves behave with different time steps and stabilization constants. It is

well known that stabilization may affect the dynamics and cause serious time delay phenomena when

lower-order schemes are used or large time steps are taken. We first test the Cahn-Hilliard equation with

N = 128, ε = 0.1, and β = 2. The results are presented in Figure 6. We observe that when time steps

are large, the time delay phenomena are obvious, but with smaller time steps τ � 0.01, the influence

becomes negligible.

Next, we examine the effect of different stabilization constants. Although theoretically they have to be

larger than the Lipschitz constant, we can still run the simulation with smaller stabilization constants.

While smaller stabilization constants cause less time delay, solutions may lose their accuracy and even

blow-up. Figure 7 shows that when τ = 0.1, the solutions are all inaccurate and exhibit obvious time

delays with the solution for β = 0.1 even showing nonphysical oscillations. This evidence indicates that

the stabilization does help the numerical solutions to maintain stability. When τ = 0.01, all three curves

with β = 0.1, 1, 2 are very close, which indicates that the stabilization has very little effect when the time

step is small.

4.4 Long time behavior of the phase field crystal model

We simulate in this subsection the long time evolution of the phase field crystal (PFC) model with

N = 256, ε = 0.025, Ω = (0, 128)× (0, 128),

and the initial condition

u0 = 0.05 + 0.01 ∗ rand(x), x ∈ Ω, (4.1)

where rand(x) is a uniformly distributed random function satisfying −1 � rand(x) � 1. The long time

behavior of the solution obtained by ETDRK3 with β = 3 and τ = 0.1 is presented in Figure 8.

The energy curves with different time steps and stabilization constants are shown in Figure 9. There

are 5 curves in total and 4 of them overlap. With β = 3, the solution is good when τ = 0.1, but when

τ = 1, the time delay caused by the stabilization is much more severe, which indicates that we should not

use any stabilization when computing with large time steps. However, it is remarkable that ETDRK3

without stabilization performs very well even with the time step as large as τ = 10.
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Figure 6 (Color online) Energy curves with different time steps for the Cahn-Hilliard equation
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Figure 8 (Color online) ETDRK3 solutions for the PFC model with β = 3, τ = 0.1 at T = 50, 100, 200, 500, 1000, 2000

4.5 Adaptive time stepping

Solutions of gradient flows may vary drastically during some short time intervals, but change only slightly

at other times. A main advantage of unconditional energy stable schemes is that they can be easily used

with an adaptive time stepping algorithm, in which the time step is only dictated by accuracy rather than

by stability. There are often essential difficulties in applying adaptive time-stepping strategies to other

schemes since most of them do not have robust unconditional stability with variable step sizes. This is

also where the significance of the high-order unconditional energy stable schemes lies.

For gradient flows, there are several effective adaptive time stepping strategies (see [4,16,29,42]). Here,

we make use of the strategy in [30] summarized in the following Algorithm 1. In Steps 4 and 6, the time

step size is given by the formula

Adp(e, τ) = ρ

(
tol

e

)r

τ, (4.2)

along with the restriction of the minimum and maximum time steps. In the above formula, ρ is a

default safety coefficient, tol is a reference tolerance, e is the relative error computed at each time level in
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Figure 9 (Color online) Energy curves with different time steps and stabilizers

Step 3, and r is the adaptive rate. In our numerical examples, we set ρ = 0.9 and tol = 5 ∗ 10−3, and the

minimum time step is 10−4, while the maximum time step is τ = 10−2 for Figures 10 and 11. The initial

time step is taken as the minimum time step.

Algorithm 1 Adaptive time stepping procedure

Given: Un, τn
Step 1. Compute Un+1

1 by the first-order ETD scheme with τn.

Step 2. Compute Un+1
2 by the third-order ETDRK scheme with τn.

Step 3. Calculate en+1 =
‖Un+1

1 −Un+1
2 ‖

‖Un+1
2 ‖ .

Step 4. If en+1 > tol, recalculate the time step τn ←− max{τmin,min{Adp(en+1, τn), τmax}},
Step 5. goto Step 1.

Step 6. else, update the time step τn+1 ←− max{τmin,min{Adp(en+1, τn), τmax}}.
Step 7. endif

We take the two-dimensional Cahn-Hilliard equation as an example to examine the performance of the

adaptive time-stepping algorithm. We take ε = 0.1, N = 512, β = 2, and r = 1/3. As a comparison, we

compute two ETDRK3 solutions with a small uniform time step τ = 10−4 and a large uniform time step

τ = 10−2 as references.
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Figure 10 (Color online) Energy curves among small time steps τ = 0.0001, adaptive time steps and large time steps

τ = 0.01 (a), and the size of time steps in the adaptive procedure (b)
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Figure 11 (Color online) Solutions for the Cahn-Hilliard equation using small time steps τ = 0.0001 (first line), adaptive

time steps (second line), and large time steps τ = 0.01 (third line)

We plot in Figure 10 the energy curses (a) and the size of adaptive time steps (b). We observe that

the solution obtained with τ = 10−2 is not accurate, while the adaptive time-stepping solutions are in

excellent agreement with the small time-step solution with τ = 10−4. In addition, except at the initial

time period and two other small time intervals where the energy varies drastically, the adaptive time

steps basically stay around τ = 10−2. Finally, we plot in Figure 11 snapshots of the phase evolution at

different times.

5 Concluding remarks

In this paper, we present a general framework for constructing unconditionally energy-stable ETDRK

schemes of arbitrary order for a class of gradient flows and identify a set of conditions that must be

satisfied for an ETDRK scheme to be unconditionally energy-stable. In particular, we show that the

widely-employed third- and fourth-order ETDRK schemes are not unconditionally energy stable and

construct new third-order ETDRK schemes which are unconditionally energy stable.

To the best of our knowledge, this is the first rigorous result on unconditionally energy-stable ETDRK

schemes higher than second-order. Potential future extensions include the following:

• Higher than third-order schemes: While we provided a set of conditions that ETDRK schemes

need to satisfy in order to be unconditionally energy stable, due to the complexity of these conditions,

the existence of higher than third-order ETDRK unconditionally energy stable schemes is still an open

question. One possibility is to add one more stage in the RK part which will lead to more free parameters

to choose from.

• Other models: We restricted ourselves to a class of gradient flows with Lipschitz nonlinearities. Since

the ETDRK schemes are based on Duhamel’s principle so that the only error comes from the numerical

integration, we expect that the new ETDRK schemes would behave well for other models with even more

complicated physical structures, although proving rigorously unconditionally energy stability for more
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complicated models would be a challenge.

We are hopeful that our results in this paper can be extended to more general systems and to ETDRK

schemes higher than third-order.
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