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Abstract. When applying the classical multistep schemes for solving differential equations, one
often faces the dilemma that smaller time steps are needed with higher-order schemes, making it
impractical to use high-order schemes for stiff problems. We construct in this paper a new class
of BDF and implicit-explicit schemes for parabolic type equations based on the Taylor expansions
at time tn+\beta with \beta > 1 being a tunable parameter. These new schemes, with a suitable \beta , allow
larger time steps at higher order for stiff problems than that which is allowed with a usual higher-
order scheme. For parabolic type equations, we identify an explicit uniform multiplier for the new
second- to fourth-order schemes and conduct rigorously stability and error analysis by using the
energy argument. We also present ample numerical examples to validate our findings.
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1. Introduction. We consider in this paper numerical methods of a class of
nonlinear ordinary or partial differential equations in the form

ut +\scrL u(t) + \scrG [u(t)] = f(t), 0< t< T,

u(0) = u0,
(1.1)

where \scrL is a linear (or possibly nonlinear) positive operator and \scrG is a nonlinear
operator, whose exact descriptions can be found in the next section.

Numerical approximation of ordinary differential equations (ODEs) is a very ma-
ture field (see, for instance, [9, 10, 15, 18]), and the numerical methods developed
for ODEs have been playing important roles in solving partial differential equations
(PDEs) in the form of (1.1) through the method of lines [27] or the so-called method
of lines transpose [20], i.e., discretizing first in time followed by the discretization in
space. In particular, the backward difference formulae (BDF) and the implicit-explicit
(IMEX) schemes are frequently used to deal with (1.1) which exhibit stiff behaviors
[8, 16, 21].

Two key issues of numerical methods for (1.1) are stability and accuracy. In
order to obtain a highly accurate solution with less computational costs, it is highly
desirable to be able to use higher-order schemes with larger time steps. However,
as we increase the order of accuracy of BDF or IMEX type schemes, their stability
regions usually decrease, i.e., smaller time steps need to be used with higher-order
schemes, particularly for stiff problems, making high-order schemes impractical for
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1610 FUKENG HUANG AND JIE SHEN

many complex nonlinear systems. A natural question arises: is it possible to develop
higher-order multistep schemes such that their stability regions are comparable or
even larger than lower-order classical BDF or IMEX schemes?

The main purposes of this paper are twofold:
\bullet to construct a new class of BDF and IMEX schemes with a tunable parameter

such that larger time steps can be used in higher-order schemes;
\bullet to carry out a rigorous stability and error analysis for this new class of IMEX

schemes.
Furthermore, we provide convincing numerical evidence to validate our theoretical
findings.

We recall that the classical BDF and IMEX schemes for approximating a solution
at time tn+1 are usually constructed using the Taylor expansion formulae at time
tn+\beta with \beta \in \{ 0,1\} . In this paper, we shall construct a new class of BDF and IMEX
schemes based on the Taylor expansion formulae at time tn+\beta with \beta \geq 1 being a tun-
able parameter. The new schemes are a simple generalization of the classical BDF or
IMEX schemes with essentially the same computational efforts. However, they enjoy a
remarkable property that their stability regions increase as the parameter \beta increases,
making it possible, by choosing a suitably large \beta , to use high-order schemes with rea-
sonably larger time steps. The price to pay with a larger \beta is increased truncation
errors, which can be more than compensated for with a higher order of accuracy.

On the other hand, it is well known that a rigorous stability and error analysis by
using the energy technique of the classical BDF (and the related IMEX) schemes of
order up to five (cf. [5, 6, 14, 22, 24]) relies on a result by Nevanlinna and Odeh [25]
(see also [3] for the extension to the six-order BDF scheme) in which the existence of
a suitable multiplier that can lead to energy stability was established. It is therefore
natural to ask whether such a multiplier exists for the new class of BDF schemes. We
shall construct explicitly suitable multipliers in a more general form for the new class of
BDF schemes of orders two to four and derive explicit telescoping formulae associated
with these multipliers. Furthermore, for nonlinear parabolic type equations, we show
rigorously that the stability condition of the new class of IMEX schemes becomes less
restrictive as \beta increases, particularly compared with the classical case of \beta = 1.

The idea behind the new class of BDF and IMEX schemes is very simple but
original and can be easily extended to other types of numerical schemes. However,
our stability and error analysis rely on the explicit formulae for the uniform multipliers
and telescoping decomposition whose derivations are totally nontrivial and original.
On the other hand, the new schemes can be easily implemented with a minimal effort
by modifying the code based on the classical BDF or IMEX schemes and provide a
much needed improvement on the stability of higher-order schemes.

The rest of the paper is organized as follows. In section 2, we describe the abstract
setting and construct the new class of BDF and IMEX methods based on the Taylor
expansion at time tn+\beta and investigate their stability regions. In section 3, we identify
an explicit and uniform multiplier for the new class of BDF and IMEX schemes, which
plays an essential role in the stability and error analysis. In section 4, we establish the
unconditional stability for the linear parabolic equations and the stability, followed
by error analysis for the nonlinear parabolic equations in section 5. In section 6,
we discuss extension to the fifth-order scheme. In section 7, we provide numerical
examples to show the advantages of our new schemes, followed by some concluding
remarks in section 8.
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A NEW CLASS OF BDF AND IMEX SCHEMES 1611

2. A new class of BDF and IMEX schemes.

2.1. The abstract setting. We first describe the functional setting. For the
sake of simplicity, we consider a simpler setting than that used in [6], although our
analysis would also work for the more general setting there.

Let V and H be two real Hilbert spaces such that V \subset H = H \prime \subset V \prime with V
densely and continuously embedded in H and V \prime being the dual space of V . We
consider (1.1) with \scrL : V \rightarrow V \prime being a positive definite, self-adjoint, linear operator,
and f in V \prime is a given source term. We denote the inner product in H by (\cdot , \cdot ) and
the induced norm in H by | \cdot | . We also denote the norm in V by \| \cdot \| , which is defined
as \| u\| := | \scrL 1/2u| = (\scrL u,u)1/2. The dual norm in V \prime is defined by

\| v\|  \star := sup
u\in V \setminus \{ 0\} 

| (v,u)| 
\| u\| 

\forall v \in V \prime .(2.1)

We assume that the nonlinear operator \scrG satisfies the following local Lipschitz con-
dition [6] in a ball \scrB u(t) := \{ v \in V : \| v  - u(t)\| \leq 1\} , centered at the exact solution
u(t),

\| \scrG (v) - \scrG (\~v)\| 2 \star \leq \gamma \| v - \~v\| 2 + \mu | v - \~v| 2 \forall v, \~v \in \scrB u(t), \forall t\in [0, T ](2.2)

with a nonnegative constant \gamma and an arbitrary constant \mu .

2.2. Construction of the new schemes. We shall first construct the new
schemes for (1.1) based on the Taylor expansion at time tn+\beta . Given an integer k\geq 2,
denoting tn = n\Delta t, it follows from the Taylor expansion at time tn+\beta that

\phi (tn+1 - i) =

k - 1\sum 
m=0

[(1 - i - \beta )\Delta t]m
\phi (m)(tn+\beta )

m!
+\scrO (\Delta tk) for k\geq i\geq 0.(2.3)

Then we can derive from the above an implicit difference formula to approximate
\partial t\phi (t

n+\beta ),

1

\Delta t

k\sum 
q=0

ak,q(\beta )\phi (t
n+1 - k+q) = \partial t\phi (t

n+\beta ) +\scrO (\Delta tk),(2.4)

where ak,q(\beta ) can be uniquely determined by solving the following linear system with
a Vandermonde matrix:\left[       

1 1 . . . . . . 1
\beta  - 1 \beta . . . . . . \beta + k - 1

(\beta  - 1)2 \beta 2 . . . . . . (\beta + k - 1)2

...
...

...
...

...
(\beta  - 1)k \beta k . . . . . . (\beta + k - 1)k

\right]       

\left[       
ak,k(\beta )

ak,k - 1(\beta )
ak,k - 2(\beta )

...
ak,0(\beta )

\right]       =

\left[       
0
 - 1
0
...
0

\right]       .(2.5)

Similarly, we can derive an implicit difference formula to approximate \phi (tn+\beta ),

k - 1\sum 
q=0

bk,q(\beta )\phi (t
n+2 - k+q) = \phi (tn+\beta ) +\scrO (\Delta tk)(2.6)

with bk,q(\beta ) being the unique solution of the following Vandermonde system:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1612 FUKENG HUANG AND JIE SHEN\left[     
1 1 . . . . . . 1

\beta  - 1 \beta . . . . . . \beta + k - 2
...

...
...

...
...

(\beta  - 1)k - 1 \beta k - 1 . . . . . . (\beta + k - 2)k - 1

\right]     
\left[     

bk,k - 1(\beta )
bk,k - 2(\beta )

...
bk,0(\beta )

\right]     =

\left[     
1
0
...
0

\right]     .(2.7)

To deal with the nonlinear term in (1.1), we also need the following explicit difference
formula to approximate \phi (tn+\beta ):

k - 1\sum 
q=0

ck,q(\beta )\phi (t
n+1 - k+q) = \phi (tn+\beta ) +\scrO (\Delta tk),(2.8)

where ck,q(\beta ) can be uniquely determined from\left[     
1 1 . . . . . . 1
\beta \beta + 1 . . . . . . \beta + k - 1
...

...
...

...
...

\beta k - 1 (\beta + 1)k - 1 . . . . . . (\beta + k - 1)k - 1

\right]     
\left[     

ck,k - 1(\beta )
ck,k - 2(\beta )

...
ck,0(\beta )

\right]     =

\left[     
1
0
...
0

\right]     .(2.9)

Then, a new class of BDF schemes for (1.1) with \scrG = 0 is

1

\Delta t

k\sum 
q=0

ak,q(\beta )\phi 
n+1 - k+q +\scrL 

\Biggl( 
k - 1\sum 
q=0

bk,q(\beta )\phi 
n+2 - k+q

\Biggr) 
= f(tn+\beta ), k\geq 2,(2.10)

and a new class of IMEX schemes for (1.1) is

1
\Delta t

k\sum 
q=0

ak,q(\beta )\phi 
n+1 - k+q +\scrL 

\Biggl( 
k - 1\sum 
q=0

bk,q(\beta )\phi 
n+2 - k+q

\Biggr) 
(2.11)

+ \scrG 

\Biggl( 
k - 1\sum 
q=0

ck,q(\beta )\phi 
n+1 - k+q

\Biggr) 
= f(tn+\beta ), k\geq 2.

Remark 1. When \beta = 1, (2.11) (resp., (2.10)) becomes the classical semi-implicit
IMEX (resp., BDF) schemes, and there have been extensive works regarding its sta-
bility and error analysis [2, 4, 6, 22, 23] in the literature. For all \beta > 1, (2.10) and
(2.11) still involve values at the same k+1-levels as the classical one (with \beta = 1) on
the left hand side, while they involve values at time tn+\beta on the right hand side.

For the reader's convenience, we list below the coefficients in (2.11) for k= 2,3,4.
k= 2:

a2,2(\beta ) =
2\beta + 1

2
, a2,1(\beta ) = - 2\beta , a2,0(\beta ) =

2\beta  - 1

2
,(2.12a)

b2,1(\beta ) = \beta , b2,0(\beta ) = - (\beta  - 1),(2.12b)

c2,1(\beta ) = \beta + 1, c2,0(\beta ) = - \beta .(2.12c)

k= 3:

a3,3(\beta ) =
3\beta 2 + 6\beta + 2

6
, a3,2(\beta ) =

 - (9\beta 2 + 12\beta  - 3)

6
,(2.13a)

a3,1(\beta ) =
9\beta 2 + 6\beta  - 6

6
, a3,0(\beta ) =

 - (3\beta 2  - 1)

6
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A NEW CLASS OF BDF AND IMEX SCHEMES 1613

b3,2(\beta ) =
\beta 2 + \beta 

2
, b3,1(\beta ) = - (\beta 2  - 1), b3,0(\beta ) =

\beta 2  - \beta 

2
,(2.13b)

c3,2(\beta ) =
\beta 2 + 3\beta + 2

2
, c3,1(\beta ) = - (\beta 2 + 2\beta ), c3,0(\beta ) =

\beta 2 + \beta 

2
.(2.13c)

k= 4:

a4,4(\beta ) =
2\beta 3 + 9\beta 2 + 11\beta + 3

12
, a4,3(\beta ) =

 - 8\beta 3  - 30\beta 2  - 20\beta + 10

12
,

(2.14a)

a4,2(\beta ) =
12\beta 3 + 36\beta 2 + 6\beta  - 18

12
,

a4,1(\beta ) =
 - 8\beta 3  - 18\beta 2 + 4\beta + 6

12
, a4,0(\beta ) =

2\beta 3 + 3\beta 2  - \beta  - 1

12
,

b4,3(\beta ) =
\beta 3 + 3\beta 2 + 2\beta 

6
, b4,2(\beta ) =

 - \beta 3  - 2\beta 2 + \beta + 2

2
, b4,1(\beta ) =

\beta 3 + \beta 2  - 2\beta 

2
,

(2.14b)

b4,0(\beta ) =
 - \beta 3 + \beta 

6
,

c4,3(\beta ) =
\beta 3 + 6\beta 2 + 11\beta + 6

6
, c4,2(\beta ) =

 - \beta 3  - 5\beta 2  - 6\beta 

2
, c4,1(\beta ) =

\beta 3 + 4\beta 2 + 3\beta 

2
,

(2.14c)

c4,0(\beta ) =
 - \beta 3  - 3\beta 2  - 2\beta 

6
.

Remark 2. Instead of deriving (2.11) from Taylor expansions, one may also de-
rive it by following the standard construction of the usual multistep methods using
interpolation formulae (see, e.g., section 2 in [19]). In fact, it can be shown that the
coefficients ak,q(\beta ), bk,q(\beta ), ck,q(\beta ) can be determined by the values at tn+\beta of the
corresponding Lagrange polynomials and their derivatives. For example,

ak,q(\beta ) =\Delta tL\prime 
q(t

n+\beta ), q= 0, . . . , k,(2.15)

where Lq is the Lagrange polynomials associated with tn+1 - k, . . . , tn+1.

2.3. Linear stability regions. In this subsection, we investigate the regions
of linear stability of the new schemes (2.10). For the test equation \phi t = \lambda \phi , (2.10)
reduces to

1

\Delta t

k\sum 
q=0

ak,q(\beta )\phi 
n+1 - k+q = \lambda 

k - 1\sum 
q=0

bk,q(\beta )\phi 
n+2 - k+q, k\geq 2.(2.16)

In order to study the stability regions for \beta \not = 1, we set \phi n =wn (here, ``n"" is an upper
index in \phi n and an exponent in wn) and z = \lambda \Delta t in (2.16) to obtain its characteristic
equation, e.g., in the case of k= 2, it takes the form

(2\beta + 1 - 2\beta z)w2 + (2(\beta  - 1)z  - 4\beta )w+ (2\beta  - 1) = 0.(2.17)

Then the region of absolute stability of method (2.16) is the set of all z \in \BbbC such that
the characteristic polynomial satisfies the root condition. We recall that the second-
order case was already considered in [17], and it was shown that the second-order case

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1614 FUKENG HUANG AND JIE SHEN

of (2.16) is A-stable for \beta \geq 1, and more importantly, the stability regions increase as
we increase \beta .

In Figures 1 and 2, we plot the stability regions of the general third- and fourth-
order BDF schemes for \beta = 1,3,5. We observe that the stability regions increase as
we increase \beta .

In order to have a better sense on how the stability regions vary with different
\beta and k, we plot in Table 2.1 a comparison of stability regions in the same scale.
We observe that (i) the stability regions increase faster when \beta is closer to 1 and (ii)
the area of the stability region with k = 4 and \beta = 3 is already bigger than that of
the classical second-order BDF. Hence, we can expect that the general fourth-order
scheme with \beta = 3 allows similar or larger time steps for nonlinear problems than the
classical second-order IMEX, avoiding the usual scenario that a smaller time step has
to be used when increasing the accuracy order.

3. Multipliers for the new BDF and IMEX schemes. In order to conduct
the stability and error analysis for the BDF and IMEX schemes by using energy
techniques, a key step is to find a suitable multiplier. A key result that allows one to
prove the energy stability of the classical BDF schemes of order up to five is established
in [25], where the existence of such a multiplier is shown; see [3] for an extension of this
result to six-order BDF. In this section, we identify an explicit multiplier and show
that it is suitable for the new BDF and IMEX schemes of second to fourth order.

3.1. Notation and a key lemma. To simplify the presentation, we introduce
the following notation:

A\beta 
k(\phi 

i) =

k\sum 
q=0

ak,q(\beta )\phi 
i - k+q, B\beta 

k (\phi 
i) =

k - 1\sum 
q=0

bk,q(\beta )\phi 
i - k+1+q,(3.1)

C\beta 
k (\phi 

i) =

k - 1\sum 
q=0

ck,q(\beta )\phi 
i - k+1+q

(a) third order, β = 1 (b) third order, β = 3 (c) third order, β = 5

(d) β = 1, zoom in around the origin (e) β = 3, zoom in around the origin (f) β = 5, zoom in around the origin

Fig. 1. The pink parts show the region of absolute stability of the general third-order BDF
scheme with Taylor expansion at n+ \beta , \beta = 1,3,5. (Color images are available online.)
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A NEW CLASS OF BDF AND IMEX SCHEMES 1615

(b) fourth order, β = 3(a) fourth order, β = 1 (c) fourth order, β = 5

(d)β = 1, zoom in around the origin (e) β = 3, zoom in around the origin (f) β = 5, zoom in around the origin

Fig. 2. The pink parts show the region of absolute stability of the general fourth-order BDF
scheme with Taylor expansion at n+ \beta , \beta = 1,3,5.

Table 2.1
Comparison of stability regions for different k and \beta on the same scale.

β = 1 β = 3 β = 5

second order

third order

fourth order

with ak,q, bk,q, ck,q defined in (2.12), (2.13), and (2.14). We also consider the charac-
teristic polynomials of the new BDF and IMEX schemes (2.10) and (2.11):

\~A\beta 
k(\zeta ) =

k\sum 
q=0

ak,q(\beta )\zeta 
q, k= 2,3,4;(3.2a)

\~C\beta 
k (\zeta ) =

k - 1\sum 
q=0

ck,q(\beta )\zeta 
q, k= 2,3,4.(3.2b)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1616 FUKENG HUANG AND JIE SHEN

We first recall the following result from Dahlquist's G-stability theory [13], which
plays a key role in establishing the energy stability of multistep methods.

Lemma 1. Let \alpha (\zeta ) = \alpha k\zeta 
k+ \cdot \cdot \cdot +\alpha 0 and \mu (\zeta ) = \mu k\zeta 

k+ \cdot \cdot \cdot +\mu 0 be polynomials of
degree at most k (and at least one of them of degree k) that have no common divisors.
Let (\cdot , \cdot ) be an inner product with associated norm | \cdot | . If

Re
\alpha (\zeta )

\mu (\zeta )
> 0 for | \zeta | > 1,(3.3)

then there exists a symmetric positive definite matrix G = (gij) \in \BbbR k\times k and real
\delta 0, . . . , \delta k such that for \upsilon 0, . . . , \upsilon k in the inner product space,\left(  k\sum 

i=0

\alpha i\upsilon 
i,

k\sum 
j=0

\mu j\upsilon 
j

\right)  =

k\sum 
i,j=1

gij(\upsilon 
i, \upsilon j) - 

k\sum 
i,j=1

gij(\upsilon 
i - 1, \upsilon j - 1) +

\bigm| \bigm| \bigm| \bigm| \bigm| 
k\sum 

i=0

\delta i\upsilon 
i

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

.(3.4)

It is clear from the above lemma that the key to establishing the energy stability of
(2.11) is to find a suitable multiplier \mu (\zeta ) = \mu k\zeta 

k+ \cdot \cdot \cdot +\mu 0 such that (3.3) is satisfied
with \alpha (\zeta ) = \~A\beta 

k(\zeta ). To this end, we first split B\beta 
k (\phi 

n+1) into two parts:

B\beta 
k (\phi 

n+1) = \eta k(\beta )C
\beta 
k (\phi 

n+1) +D\beta 
k (\phi 

n+1), k= 2,3,4,(3.5)

with

\eta 2(\beta ) =
\beta  - 1

\beta 
, \eta 3(\beta ) =

\beta  - 1

\beta + 1
, \eta 4(\beta ) =

\beta  - 1

\beta + 3
, \beta \geq 1,(3.6)

and D\beta 
k can be written as

D\beta 
k (\phi 

n+1) =

k - 1\sum 
q=0

dk,q(\beta )\phi 
n+2 - k+q, k= 2,3,4,(3.7)

with

d2,1(\beta ) =
1

\beta 
, d2,0(\beta ) = 0,(3.8a)

d3,2(\beta ) = 1, d3,1(\beta ) =
1 - \beta 

1 + \beta 
, d3,0(\beta ) = 0,(3.8b)

d4,3(\beta ) =
\beta 2

6
+

\beta 

2
+

1

3
, d4,2(\beta ) = - 

\biggl( 
\beta 2

2
+

\beta 

2
 - 1

\biggr) 
, d4,1(\beta ) =

\beta (\beta  - 1)

2
,(3.8c)

d4,0(\beta ) = - \beta (\beta 2  - 1)

6(\beta + 3)
.

We also define

\~D\beta 
k (\zeta ) =

k - 1\sum 
q=0

dk,q(\beta )\zeta 
q, k= 2,3,4.(3.9)

Remark 3. The choices of \eta i(\beta ) are not unique. We choose \eta 2(\beta ), \eta 3(\beta ) defined
in (3.6) to make D\beta 

2 , D
\beta 
3 as simple as possible and the choice of \eta 4(\beta ) defined in (3.6)

allows us to prove (3.13) in the next subsection.
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A NEW CLASS OF BDF AND IMEX SCHEMES 1617

3.2. A uniform multiplier. Note that in [25], it was shown that there exists a
multiplier in the form of \phi n+1 - \~\eta k\phi 

n with \~\eta k \geq 0 for the usual BDF schemes of order
2 to 5. Surprisingly, we can find a uniform multiplier for the new BDF and IMEX
schemes of order 2 to 4. More precisely, we have the following results.

Theorem 1. Given \beta \geq 1, then

gcd
\bigl( 
\~A\beta 
k(\zeta ), \zeta 

\~C\beta 
k (\zeta )

\bigr) 
= gcd

\bigl( 
\~D\beta 
k (\zeta ),

\~C\beta 
k (\zeta )

\bigr) 
= 1, k= 2,3,4,(3.10)

i.e., they have no common divisor, and

Re
\~A\beta 
k(\zeta )

\zeta \~C\beta 
k (\zeta )

> 0 for | \zeta | > 1, k= 2,3,4.(3.11)

Moreover, we also have

Re
\~D\beta 
k (\zeta )

\~C\beta 
k (\zeta )

> 0 for | \zeta | > 1, k= 2,3;(3.12)

and finally if \beta \geq 2, then we also have

Re
\~D\beta 
4 (\zeta )

\~C\beta 
4 (\zeta )

> 0 for | \zeta | > 1.(3.13)

Proof. The proof follows the basic process in [3]. We will provide the proof for the
case k = 4 in detail as it includes some technical estimations, and then we will point
out the key steps for the cases k= 2,3, which are easier to handle. To simplify the no-
tation, we often omit the dependence on \beta for the coefficients ak,q(\beta ), ck,q(\beta ), dk,q(\beta ),
i.e., we only write them as ak,q, ck,q, dk,q.

Case I: k = 4. First, we show gcd
\bigl( 
\~A\beta 
4 (\zeta ), \zeta 

\~C\beta 
4 (\zeta )

\bigr) 
= 1 by using the Sylvester

resultant [1] as follows. The Sylvester matrix [1] of \~A\beta 
4 (\zeta ) and

\~C\beta 
4 (\zeta ) is

Sly( \~A\beta 
4 ,

\~C\beta 
4 ) =

\left(          

a4,4 a4,3 a4,2 a4,1 a4,0 0 0
0 a4,4 a4,3 a4,2 a4,1 a4,0 0
0 0 a4,4 a4,3 a4,2 a4,1 a4,0

c4,3 c4,2 c4,1 c4,0 0 0 0
0 c4,3 c4,2 c4,1 c4,0 0 0
0 0 c4,3 c4,2 c4,1 c4,0 0
0 0 0 c4,3 c4,2 c4,1 c4,0

\right)          
.(3.14)

It is easy to verify that its determinant is

detSly( \~A\beta 
4 ,

\~C\beta 
4 ) = - 1

5184

\bigl( 
18\beta 6 + 144\beta 5 + 426\beta 4 + 566\beta 3(3.15)

+ 321\beta 2 + 55\beta + 3
\bigr) 
\not = 0 for \beta \geq 1,

which implies that gcd
\bigl( 
\~A\beta 
4 (\zeta ),

\~C\beta 
4 (\zeta )

\bigr) 
= 1. Combined with \~A\beta 

4 (0) = a4,0 \not = 0, it also

implies that \~A\beta 
4 (\zeta ) and \zeta \~C\beta 

4 (\zeta ) have no common divisor.

Next, we show
\~A\beta 
4 (\zeta )

\zeta \~C\beta 
4 (\zeta )

is holomorphic outside the unit disk in the complex plane.

To this end, it suffices to show that all three zeros of \~C\beta 
4 (\zeta ) are inside the unit disk.

Note that

d \~C\beta 
4

dx
(x) = 3c4,3x

2 + 2c4,2x+ c4,1(3.16)
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1618 FUKENG HUANG AND JIE SHEN

with

c4,3 =
\beta 3 + 6\beta 2 + 11\beta + 6

6
> 0, \Delta 4 := 4c24,2  - 12c4,3c4,1 = - \beta (\beta + 2)(\beta + 3)2 < 0,

(3.17)

which means \~C4(x) is monotonically increasing in the real axis. Note also that

\~C\beta 
4 (0) = c4,0 = - \beta 3 + 3\beta 2 + 2\beta 

6
< 0, \~C\beta 

4 (1) = c4,3 + c4,2 + c4,1 + c4,0 = 1.(3.18)

Therefore, \~C\beta 
4 (\zeta ) = 0 has exactly one real root, denoted as x1, and two complex roots,

denoted as z2, z3 = \=z2, in the complex plane. Next, we denote

x0 :=
 - c4,0
c4,3  - 1

=
\beta 2 + 3\beta + 2

\beta 2 + 6\beta + 11
.(3.19)

Then we can find with \beta \geq 1,

\~C\beta 
4 (x0) = - 2\beta 6 + 27\beta 5 + 141\beta 4 + 351\beta 3 + 405\beta 2 + 162\beta  - 8

(\beta 2 + 6\beta + 11)3
< 0.(3.20)

Combining (3.18) and (3.20), we have x0 < x1 < 1. On the other hand, by Vieta's
formulae, we have

x1z2z3 = x1| z2| 2 = - c4,0
c4,3

, then | z2| 2 =
1

x1

 - c4,0
c4,3

<
1

x0

 - c4,0
c4,3

=
c4,3  - 1

c4,3
< 1.(3.21)

As a result, we have | x1| , | z2| , | z3| < 1 and hence
\~A\beta 
4 (\zeta )

\zeta \~C\beta 
4 (\zeta )

and
\~D\beta 
4 (\zeta )

\~C\beta 
4 (\zeta )

are holomorphic

outside the unit disk.
On the other hand, we have

lim
| \zeta | \rightarrow \infty 

\~A\beta 
4 (\zeta )

\zeta \~C\beta 
4 (\zeta )

=
a4,4
c4,3

=
2\beta 3 + 9\beta 2 + 11\beta + 3

2(\beta 3 + 6\beta 2 + 11\beta + 6)
> 0.(3.22)

Therefore, it follows from the maximum principle for harmonic functions that Re
\~A\beta 
4 (\zeta )

\zeta \~C\beta 
4 (\zeta )

> 0 for all | \zeta | > 1 is equivalent to

Re
\~A\beta 
4 (\zeta )

\zeta \~C\beta 
4 (\zeta )

\geq 0 \forall \zeta \in \BbbS 1(3.23)

with \BbbS 1 being the unit circle in the complex plane, and which is equivalent to

Re[ \~A\beta 
4 (e

i\theta )e - i\theta \~C\beta 
4 (e

 - i\theta )]\geq 0, \theta \in [0,2\pi ).(3.24)

Letting y := cos(\theta ) and using the trigonometric identities

cos(2\theta ) = 2y2  - 1, cos(3\theta ) = 4y3  - 3y, sin(2\theta ) = 2y sin(\theta ), sin(3\theta ) = (4y2  - 1) sin(\theta ),

(3.25)

we find

\~C\beta 
4 (e

 - i\theta ) = c4,3 cos(3\theta ) + c4,2 cos(2\theta ) + c4,1 cos(\theta ) + c4,0

 - i[c4,3 sin(3\theta ) + c4,2 sin(2\theta ) + c4,1 sin(\theta )]

= c4,3(4y
3  - 3y) + c4,2(2y

2  - 1) + c4,1y+ c4,0

 - i[c4,3(4y
2  - 1) + 2c4,2y+ c4,1] sin(\theta )

(3.26)
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A NEW CLASS OF BDF AND IMEX SCHEMES 1619

and

\~A\beta 
4 (e

i\theta )e - i\theta = a4,4e
3i\theta + a4,3e

2i\theta + a4,2e
i\theta + a4,1 + a4,0e

 - i\theta 

= a4,4 cos(3\theta ) + a4,3 cos(2\theta ) + a4,2 cos(\theta ) + a4,1 + a4,0 cos(\theta )

+ i[a4,4 sin(3\theta ) + a4,3 sin(2\theta ) + a4,2 sin(\theta ) - a4,0 sin(\theta )]

= a4,4(4y
3  - 3y) + a4,3(2y

2  - 1) + (a4,2 + a4,0)y+ a4,1

+ i[a4,4(4y
2  - 1) + 2a4,3y+ a4,2  - a4,0] sin(\theta ).

(3.27)

It follows from (3.26), (3.27), and \~A\beta 
4 (1) = 0, sin2(\theta ) = 1 - y2 that

Re[ \~A\beta 
4 (e

i\theta )e - i\theta \~C\beta 
4 (e

 - i\theta )] =
1

9
(1 - y)(\omega 3(\beta )y

3 + \omega 2(\beta )y
2 + \omega 1(\beta )y+ \omega 0(\beta ))(3.28)

=:
1

9
(1 - y)f4(y)

with

f4(y) = \omega 3(\beta )y
3 + \omega 2(\beta )y

2 + \omega 1(\beta )y+ \omega 0(\beta ),

\omega 0(\beta ) = 2\beta 6 + 15\beta 5 + 39\beta 4 + 39\beta 3 + 10\beta 2 + 15,

\omega 1(\beta ) = - 6\beta 6  - 45\beta 5  - 117\beta 4  - 116\beta 3  - 21\beta 2 + 17\beta + 9,

\omega 2(\beta ) = 6\beta 6 + 45\beta 5 + 117\beta 4 + 115\beta 3 + 12\beta 2  - 34\beta  - 12,

\omega 3(\beta ) = - 2\beta 6  - 15\beta 5  - 39\beta 4  - 38\beta 3  - \beta 2 + 17\beta + 6.

(3.29)

In the following, we omit the dependence on \beta for \omega i, i= 0,1,2,3.
It is clear that (3.24) is equivalent to

f4(y)\geq 0 \forall y \in [ - 1,1].(3.30)

With \omega i defined in (3.29) and \beta \geq 1, we have

f4(1) = \omega 0 + \omega 1 + \omega 2 + \omega 3 = 18> 0,

f4( - 1) = \omega 0  - \omega 1 + \omega 2  - \omega 3 = 16\beta 6 + 120\beta 5 + 312\beta 4 + 308\beta 3 + 44\beta 2  - 68\beta  - 12> 0,

(3.31)

and

f \prime 
4(y) = 3\omega 3y

2 + 2\omega 2y+ \omega 1.(3.32)

If f \prime 
4(y) does not have zero in [ - 1,1], then (3.31) implies (3.30). Otherwise, supposing

there exists  - 1\leq y0 \leq 1 such that f \prime 
4(y0) = 0, we only need to show f4(y0)\geq 0. Indeed,

with f \prime 
4(y0) = 0, we have

3f4(y0) = 3f4(y0) - y0f
\prime 
4(y0) = \omega 2y

2
0 + 2\omega 1y0 + 3\omega 0.(3.33)

Denote

g4(y) := \omega 2y
2 + 2\omega 1y+ 3\omega 0;(3.34)

then with \beta \geq 1, we have

g4(1) = \omega 2 + 2\omega 1 + 3\omega 0 = 51> 0,

g4( - 1) = \omega 2  - 2\omega 1 + 3\omega 0 = 24\beta 6 + 180\beta 5 + 468\beta 4 + 464\beta 3 + 84\beta 2  - 68\beta + 15> 0,

\Delta g = 4\omega 2
1  - 12\omega 2\omega 0 = - 1220\beta 6  - 9108\beta 5  - 23408\beta 4  - 22212\beta 3  - 1076\beta 2 + 7344\beta 

+ 2484< 0,

(3.35)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

6/
24

 to
 2

02
.5

1.
24

7.
23

 b
y 

Ji
e 

Sh
en

 (
sh

en
7@

pu
rd

ue
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1620 FUKENG HUANG AND JIE SHEN

which means g4(y)> 0 for all y \in [ - 1,1]. In particular, we have f4(y0) =
1
3g4(y0)> 0,

which implies (3.30), which in turn implies (3.24). Therefore, we proved (3.11) with
k= 4.

Next, we prove (3.13) with \beta \geq 2. The procedure is similar to the proof of (3.11)
above. First, the Sylvester matrix of \~D\beta 

4 (\zeta ) and
\~C\beta 
4 (\zeta ),

Sly( \~D\beta 
4 ,

\~C\beta 
4 ) =

\left(        
d4,3 d4,2 d4,1 d4,0 0 0
0 d4,3 d4,2 d4,1 d4,0 0
0 0 d4,3 d4,2 d4,1 d4,0

c4,3 c4,2 c4,1 c4,0 0 0
0 c4,3 c4,2 c4,1 c4,0 0
0 0 c4,3 c4,2 c4,1 c4,0

\right)        ,(3.36)

and its determinant is

detSly( \~D\beta 
4 ,

\~C\beta 
4 ) = - \beta 2(\beta 2 + 3\beta + 2)2

36
< 0,(3.37)

which implies \~D\beta 
4 (\zeta ) and

\~C\beta 
4 (\zeta ) have no common divisor. Since we have shown in the

above that
\~D\beta 
4 (\zeta )

\~C\beta 
4 (\zeta )

is holomorphic outside the unit disk, following the same process as

above, we have that (3.13) is equivalent to

h4(y) = \alpha 3(\beta )y
3 + \alpha 2(\beta )y

2 + \alpha 1(\beta )y+ \alpha 0(\beta )\geq 0 for all y \in [ - 1,1](3.38)

with

\alpha 0(\beta ) =
1

9(\beta + 3)
(2\beta 6 + 15\beta 5 + 35\beta 4 + 15\beta 3  - 37\beta 2  - 39\beta + 9),

\alpha 1(\beta ) = - 2\beta 5

3
 - 3\beta 4  - 10\beta 3

3
+ \beta 2 + 2\beta + 1,

\alpha 2(\beta ) =
1

3
(\beta (2\beta 4 + 9\beta 3 + 12\beta 2 + 3\beta  - 2)),

\alpha 3(\beta ) = - 1

9
(\beta (\beta + 1)2(2\beta 2 + 5\beta + 2)).

(3.39)

In the following, we omit the dependence on \beta for \alpha i, i= 0,1,2,3. Hence, we have

h4( - 1) = - \alpha 3 + \alpha 2  - \alpha 1 + \alpha 0

=
2

9(\beta + 3)
(8\beta 6 + 60\beta 5 + 152\beta 4 + 132\beta 3  - 16\beta 2  - 57\beta  - 9)> 0,

h4(1) = \alpha 3 + \alpha 2 + \alpha 1 + \alpha 0 =
4

\beta + 3
> 0,

(3.40)

and

h\prime 
4(y) = 3\alpha 3y

2 + 2\alpha 2y+ \alpha 1.(3.41)

Similarly as before, if h\prime 
4(y) does not have zero in [ - 1,1], then (3.40) implies (3.38).

Supposing  - 1\leq y0 \leq 1 such that h\prime 
4(y0) = 0, we only need to show h4(y0)\geq 0.

With h\prime 
4(y0) = 0 and \alpha 3 \not = 0, we have

3h4(y0) = 3h4(y0) - y0h
\prime 
4(y0) = \alpha 2y

2
0 + 2\alpha 1y0 + 3\alpha 0

=
\alpha 2

3\alpha 3
h\prime 
4(y0) + (2\alpha 1  - 

2\alpha 2
2

3\alpha 3
)y0 + 3\alpha 0  - 

\alpha 1\alpha 2

3\alpha 3

= 0+ (2\alpha 1  - 
2\alpha 2

2

3\alpha 3
)y0 + 3\alpha 0  - 

\alpha 1\alpha 2

3\alpha 3
.

(3.42)
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A NEW CLASS OF BDF AND IMEX SCHEMES 1621

We define

p(y) :=

\biggl( 
2\alpha 1  - 

2\alpha 2
2

3\alpha 3

\biggr) 
y+ 3\alpha 0  - 

\alpha 1\alpha 2

3\alpha 3
.(3.43)

Then p(y\ast ) = 0 if we define y\ast as

y\ast :=
\alpha 1\alpha 2

3\alpha 3
 - 3\alpha 0

2\alpha 1  - 2\alpha 2
2

3\alpha 3

=
4\beta 4 + 30\beta 3 + 35\beta 2 + 3\beta 

4\beta 4 + 30\beta 3 + 71\beta 2 + 54\beta + 9
,(3.44)

and we also have

2\alpha 1  - 
2\alpha 2

2

3\alpha 3
=

8\beta 2 + 28\beta + 6

6\beta + 3
> 0.(3.45)

Therefore, to prove (3.38), it suffices to show y0 \geq y\ast . However, this is more com-
plicated as (3.44) implies that y\ast can be arbitrarily close to 1 by increasing \beta , and
meanwhile, there indeed exists y\ast < y0 < 1 such that h\prime 

4(y0) = 0.
If follows from (3.41) that

y0 =
 - 2\alpha 2 \pm 

\surd 
\Delta h

6\alpha 3
(3.46)

with

\Delta h := 4\alpha 2
2  - 12\alpha 1\alpha 3 =

4\beta (\beta + 1)2(4\beta 3 + 22\beta 2 + 31\beta + 6)

9
> 0.(3.47)

We can estimate \Delta h as follows:

\Delta h <\Delta h +
4(\beta + 1)2(2\beta 3 + 5\beta 2  - 6\beta )

9
=

4

9
(\beta + 1)2(2\beta 2 + 6\beta )2 =:\Delta \ast 

h.(3.48)

To show y0 \geq y\ast , we only consider the smallest root of h\prime 
4(y) = 0. Since we have \alpha 2 > 0

and \alpha 3 < 0, the smallest root is

y0 =
 - 2\alpha 2 +

\surd 
\Delta h

6\alpha 3
>

 - 2\alpha 2 +
\sqrt{} 

\Delta \ast 
h

6\alpha 3
=

2\beta 3 + 7\beta 2 + 3\beta  - 8

2\beta 3 + 7\beta 2 + 7\beta + 2
.(3.49)

Finally, we can prove y0 \geq y\ast as follows. It follows from (3.44) and (3.49) that

y0  - y\ast >
2\beta 3 + 7\beta 2 + 3\beta  - 8

2\beta 3 + 7\beta 2 + 7\beta + 2
 - 4\beta 4 + 30\beta 3 + 35\beta 2 + 3\beta 

4\beta 4 + 30\beta 3 + 71\beta 2 + 54\beta + 9

=
56\beta 4 + 138\beta 3  - 95\beta 2  - 339\beta  - 72

8\beta 6 + 80\beta 5 + 300\beta 4 + 523\beta 3 + 430\beta 2 + 153\beta + 18
,

(3.50)

and given \beta \geq 2,

56\beta 4 + 138\beta 3  - 95\beta 2  - 339\beta  - 72\geq 56\times 23\beta + 138\times 2\beta 2  - 95\beta 2  - 339\beta  - 72

= 109\beta + 181\beta 2  - 72> 0.

(3.51)

Therefore, we have y0 \geq y\ast . Hence (3.13) is proved for \beta \geq 2.
For the case k = 2 and 3, we can prove (3.11) and (3.12) by the same process as

above, so we only point out some related facts below, which are sufficient to complete
the proof.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

6/
24

 to
 2

02
.5

1.
24

7.
23

 b
y 

Ji
e 

Sh
en

 (
sh

en
7@

pu
rd

ue
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1622 FUKENG HUANG AND JIE SHEN

Case II: k= 2.
\bullet detSly( \~A\beta 

2 ,
\~C\beta 
2 ) = - 1

2 \not = 0, detSly( \~D\beta 
2 ,

\~C\beta 
2 ) = - 1 \not = 0, \~A\beta 

2 (0) \not = 0.

\bullet The only zero of \~C\beta 
2 (\zeta ) is

\beta 
1+\beta < 1, which means

\~A\beta 
2 (\zeta )

\zeta \~C\beta 
2 (\zeta )

and
\~D\beta 
2 (\zeta )

\~C\beta 
2 (\zeta )

are holo-

morphic outside the unit disk.
\bullet For k= 2, (3.11) is equivalent to

f2(y) = ( - 2\beta 2  - \beta + 1)y+ 2\beta 2 + \beta + 1\geq 0 \forall y \in [ - 1,1],(3.52)

which is true since f2(y) is monotonically decreasing and f2(1) = 2.
\bullet For k= 2, (3.12) is equivalent to

h3(y) = - y+ 1+
1

\beta 
\geq 0 \forall y \in [ - 1,1],(3.53)

which is obviously true.
Case III: k= 3.
\bullet detSly( \~A\beta 

3 ,
\~C\beta 
3 ) =

\beta 2

8 + 5\beta 
24 + 1

36 \not = 0, detSly( \~D\beta 
3 ,

\~C\beta 
3 ) =

\beta (\beta +1)
2 \not = 0, \~A\beta 

3 (0) \not =
0 for all \beta \geq 1.

\bullet \~C\beta 
3 (\zeta ) has two complex zeros z1 and z2 such that | z1| 2 = | z2| 2 = \beta 

\beta +2 < 1,

which means
\~A\beta 
3 (\zeta )

\zeta \~C\beta 
3 (\zeta )

and
\~D\beta 
3 (\zeta )

\~C\beta 
3 (\zeta )

are holomorphic outside the unit disk.

\bullet For k= 3, (3.11) is equivalent to

f3(y) = \sigma 2(\beta )y
2 + \sigma 1(\beta )y+ \sigma 0 \geq 0 \forall y \in [ - 1,1](3.54)

with

\sigma 2(\beta ) = 3\beta 4 + 9\beta 3 + 5\beta 2  - 3\beta  - 2,(3.55a)

\sigma 1(\beta ) = - 6\beta 4  - 18\beta 3  - 13\beta 2 + \beta + 4,(3.55b)

\sigma 0(\beta ) = 3\beta 4 + 9\beta 3 + 8\beta 2 + 2\beta + 4.(3.55c)

(3.54) is true since \sigma 2(\beta )> 0 for \beta \geq 1 and

f3( - 1) = 12\beta 4 + 36\beta 3 + 26\beta 2  - 2\beta  - 2> 0,(3.56a)

f3(1) = 6,(3.56b)

\Delta 3 := \sigma 2
1  - 4\sigma 0\sigma 2 = - 63\beta 4  - 186\beta 3  - 95\beta 2 + 72\beta + 48< 0.(3.56c)

\bullet For k= 3, (3.12) is equivalent to

h3(y) = \mu 2(\beta )y
2 + \mu 1(\beta )y+ \mu 0(\beta )\geq 0 \forall y \in [ - 1,1](3.57)

with

\mu 2(\beta ) = \beta (\beta + 1),(3.58a)

\mu 1(\beta ) = - 2\beta 2  - 2\beta + 1,(3.58b)

\mu 0(\beta ) =
\beta 3 + 2\beta 2 + 1

\beta + 1
.(3.58c)

(3.57) is true since \mu 2(\beta )> 0 for \beta \geq 1 and

h3( - 1) =
2\beta (2\beta 2 + 4\beta + 1)

\beta + 1
> 0,(3.59a)

h3(1) =
2

\beta + 1
> 0,(3.59b)

\Delta \ast 
3 := \mu 2

1  - 4\mu 0\mu 2 = 1 - 8\beta < 0.(3.59c)

The proof for all the cases is completed.
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A NEW CLASS OF BDF AND IMEX SCHEMES 1623

Remark 4. The restriction \beta \geq 2 is a sufficient condition for (3.13), which comes
from (3.51). One can easily show that (3.37) and (3.51) are true whenever \beta > 1.6.
On the other hand, (3.38) is not true when \beta = 1 as h4(0.2) =  - 0.312 < 0 with h4

defined in (3.38).

3.3. Explicit telescoping formulae for the second- and third-order
schemes. Note that Lemma 1 only provides the existence of a symmetric positive
definite matrix G without giving the exact value of gij . In the following, we provide
explicit formulae for gij in the second- and third-order cases.

Proposition 3.1. For the second-order version of (2.11), we have\bigl( 
D\beta 

2 (\phi 
n+1),C\beta 

2 (\phi 
n+1)

\bigr) 
=

1

\beta 
| \phi n+1| 2 + 1

2
| \phi n+1| 2  - 1

2
| \phi n| 2 + 1

2
| \phi n+1  - \phi n| 2(3.60)

and

\bigl( 
A\beta 

2 (\phi 
n+1),C\beta 

2 (\phi 
n+1)

\bigr) 
= a2| \phi n+1| 2  - a2| \phi n| 2 + | b2\phi n+1 + c2\phi 

n| 2  - | b2\phi n + c2\phi 
n - 1| 2

+ | d2\phi n+1 + e2\phi 
n + f2\phi 

n - 1| 2,

(3.61)

where the coefficients are given by

e2 = - 
\sqrt{} 
2\beta (2\beta + 1), \Delta 2 = 2\beta (2\beta + 1), c2 = f2 =

 - 
\surd 
2 +

\surd 
\Delta 2

2
,

d2 =
\surd 
2 + f2, E2 = - \beta (2\beta  - 1), b2 =

E2  - 2e2f2
 - 2c

, a2 =
3\beta + 1 - 2

\sqrt{} 
\beta (2\beta + 1)

2(\beta + 1)2
.

Moreover, we have a2 > 0 for all \beta \geq 1.

Proposition 3.2. For the third-order version of (2.11), we have

\bigl( 
D\beta 

3 (\phi 
n+1),C\beta 

3 (\phi 
n+1)

\bigr) 
= \^a3| \phi n+1| 2  - \^a3| \phi n| 2 + | \^b3\phi n+1 + \^c3\phi 

n| 2  - | \^b3\phi n + \^c3\phi 
n - 1| 2

+ | \^d3\phi n+1 + \^e3\phi 
n + \^f3\phi 

n - 1| 2,

(3.62)

where the coefficients are given by

\^M =
2\beta 3 + 4\beta 2 + \beta + 1

\beta + 1
, \^N =

(2\beta 2 + 2\beta  - 1)2

4
, \^\Delta 3 = \^M2  - 4 \^N =

4\beta (2\beta 2 + 4\beta + 1)

(\beta + 1)2
,

\^e3 = - 

\sqrt{} 
\^M  - 

\sqrt{} 
\^\Delta 3

2
, \^P =

\beta 3 + 2\beta 2 + 1

\beta + 1
 - \^e23,

\^Q=
2\beta 3 + 4\beta 2 + \beta + 1

\beta + 1
 - \^e23,

\^f3 =
 - 
\sqrt{} 

\^P +

\sqrt{} 
\^Q

2
, \^c3 = \^f3, \^d3 =

\sqrt{} 
\^P + \^f3, \^b3 =

\beta (\beta  - 1) + 4\^e3 \^f3
4\^c3

,

\^a3 =
\beta 2

2
+

3\beta 

2
+ 1 - \^b23  - \^d23,

(3.63)

and

\bigl( 
A\beta 

3 (\phi 
n+1),C\beta 

3 (\phi 
n+1)

\bigr) 
= a3| \phi n+1| 2  - a3| \phi n| 2 + | b3\phi n+1 + c3\phi 

n| 2  - | b3\phi n + c3\phi 
n - 1| 2

+ | d3\phi n+1 + e3\phi 
n + f3\phi 

n - 1| 2  - | d3\phi n + e3\phi 
n - 1 + f3\phi 

n - 2| 2

+ | g3\phi n+1 + h3\phi 
n + i3\phi 

n - 1 + j3\phi 
n - 2| 2,

(3.64)
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1624 FUKENG HUANG AND JIE SHEN

Fig. 3. Values of \^a3 and a3 with different \beta .

where the coefficients are given by

M = 2\beta 4 + 6\beta 3 +
13\beta 2

3
 - \beta 

3
 - 1

3
, N = - (

\beta 2

2
 - 1

6
)(
\beta 2

2
+

3\beta 

2
+ 1), P =

\surd 
M + 1

2
,

Q= - 1

2

\biggl( 
\beta 

\biggl( 
\beta 2

2
 - 1

6

\biggr) 
(\beta + 1)

\biggr) 
, R= \beta 4 +

7\beta 3

2
+

19\beta 2

6
 - \beta 

3
 - 1,

S =
7\beta 4

4
+

25\beta 3

4
+

17\beta 2

3
+

\beta 

2
+

1

3
,

W =

\biggl( 
\beta 2

2
+

3\beta 

2
+ 1

\biggr) \biggl( 
\beta 2

2
+ \beta +

1

3

\biggr) 
, U =

1

2
 - 79\beta 2

12
 - 21\beta 3

4
 - 5\beta 4

4
 - 23\beta 

12
,

f3 =

\surd 
P 2 + 2N + P

2
, j3 = f3, g3 = f3  - P, i3 = - 

\surd 
M  - g3, h3 =

\surd 
M  - f3,

e3 =
2i3j3  - Q

2f3
,

d3 =
R - 2g3i3

2f3
, c3 =

\sqrt{} 
S  - e23  - g23  - h2

3, b3 =
U  - 2d3e3  - 2g3h3

2c3
,

a3 =W  - g23  - d23  - b23.

(3.65)

Moreover, it is numerically verified that all variables appearing in (3.63) and (3.65)
are real and bounded, and \^a3, a3 > 0 for 1\leq \beta \leq 100 (cf. Figure 3).

The proof of the above two propositions is based on the method of undetermined
coefficients; more precisely, we assume a desired form and use the method of undeter-
mined coefficients to find the suitable coefficients. The detail of the proof is tedious
but straightforward so we leave it to interested readers.

4. Stability of (2.10) for linear parabolic type equations. We consider in
this section the new BDF schemes for the linear case (2.10), which can be written as

A\beta 
k(\phi 

n+1)

\Delta t
+\scrL B\beta 

k (\phi 
n+1) = fn+\beta , k= 2,3,4,(4.1)

and establish a stability result based on Theorem 1.
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A NEW CLASS OF BDF AND IMEX SCHEMES 1625

Theorem 2. Assuming \| f(t)\| 2 \star \leq Cf for all t\leq T , \beta > 1 for k= 2,3, and \beta \geq 2
for k= 4, then the scheme (4.1) is stable in the sense that

gk| \phi n+1| 2 + 1

2
\Delta t\eta k(\beta )

n+1\sum 
q=k

\| C\beta 
k (\phi 

q)\| 2 \leq C

k - 1\sum 
q=0

\bigl( 
| \phi q| 2 +\Delta t\| \phi q\| 2

\bigr) 
(4.2)

+
TCf

2\eta k(\beta )
\forall k\leq n+ 1\leq T

\Delta t

with gk a positive constant depending only on k, C a constant independent of \Delta t, and
\eta k(\beta ) as defined in (3.6).

Proof. We denote f i = f(ti) for all i \leq T
\Delta t . Taking the inner product of (4.1)

with \Delta tC\beta 
k (\phi 

n+1) and splitting B\beta 
k (\phi 

n+1) as in (3.5), we obtain\bigl( 
A\beta 

k(\phi 
n+1),C\beta 

k (\phi 
n+1)

\bigr) 
+\Delta t\eta k(\beta )\| C\beta 

k (\phi 
n+1)\| 2 +\Delta t

\bigl( 
\scrL D\beta 

k (\phi 
n+1),C\beta 

k (\phi 
n+1)

\bigr) 
(4.3)

=\Delta t
\bigl( 
fn+\beta ,C\beta 

k (\phi 
n+1)

\bigr) 
,

where we used
\bigl( 
\scrL C\beta 

k (\phi 
n+1),C\beta 

k (\phi 
n+1)

\bigr) 
= \| C\beta 

k (\phi 
n+1)\| 2. We estimate the terms in

(4.3) as follows.
It follows from (2.1) and the assumption on f that\bigl( 

fn+\beta ,C\beta 
k (\phi 

n+1)
\bigr) 
\leq \| fn+\beta \|  \star \| C\beta 

k (\phi 
n+1)\| 

\leq 1

2\eta k(\beta )
\| fn+\beta \| 2 \star +

\eta k(\beta )

2
\| C\beta 

k (\phi 
n+1)\| 2

\leq Cf

2\eta k(\beta )
+

\eta k(\beta )

2
\| C\beta 

k (\phi 
n+1)\| 2.

(4.4)

Denote \Phi n+1
k := (\phi n - k+1, . . . , \phi n+1)T . It follows from Lemma 1 and Theorem 1 that

there exist symmetric positive definite matrices G = (gij) \in \BbbR k\times k and H = (hij) \in 
\BbbR (k - 1)\times (k - 1) such that

\bigl( 
A\beta 

k(\phi 
n+1),C\beta 

k (\phi 
n+1)

\bigr) 
\geq 

k\sum 
i,j=1

gij(\phi 
n+1+i - k, \phi n+1+j - k) - 

k\sum 
i,j=1

gij(\phi 
n+i - k, \phi n+j - k)

=: | \Phi n+1
k | 2G  - | \Phi n

k | 2G

(4.5)

and

\bigl( 
\scrL D\beta 

k (\phi 
n+1),C\beta 

k (\phi 
n+1)

\bigr) 
\geq 

k - 1\sum 
i,j=1

hij(\scrL \phi n+2+i - k, \phi n+2+j - k)

 - 
k - 1\sum 
i,j=1

hij(\scrL \phi n+1+i - k, \phi n+1+j - k)

=: \| \Phi n+1
k \| 2H  - \| \Phi n

k\| 2H .

(4.6)

Now, combining (4.3)--(4.6), we obtain

| \Phi n+1
k | 2G  - | \Phi n

k | 2G +\Delta t(\| \Phi n+1
k \| 2H  - \| \Phi n

k\| 2H) +
1

2
\Delta t\eta k(\beta )\| C\beta 

k (\phi 
n+1)\| 2 \leq Cf\Delta t

2\eta k(\beta )
.

(4.7)
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1626 FUKENG HUANG AND JIE SHEN

Summing up (4.7) from n= k - 1 to n=m, we obtain

| \Phi m+1
k | 2G +\Delta t\| \Phi m+1

k \| 2H +
1

2
\Delta t\eta k(\beta )

m\sum 
q=k - 1

\| C\beta 
k (\phi 

q+1)\| 2(4.8)

\leq | \Phi k - 1
k | 2G +\Delta t\| \Phi k - 1

k \| 2H +
TCf

2\eta k(\beta )
.

Let gk be the smallest eigenvalue of the matrix G\in \BbbR k,k, and then we have

| \Phi m+1
k | 2G \geq gk| \phi m+1| 2,(4.9)

and we can choose a constant C large enough such that

| \Phi k - 1
k | 2G \leq C

k - 1\sum 
i=0

| \phi i| 2,(4.10a)

\Delta t\| \Phi k - 1
k \| 2H \leq C\Delta t

k - 1\sum 
i=0

\| \phi i\| 2.(4.10b)

Finally, combining (4.8) and (4.10) leads to

gk| \phi m+1| 2 + 1

2
\Delta t\eta k(\beta )

m\sum 
q=k - 1

\| C\beta 
k (\phi 

q+1)\| 2 \leq C

k - 1\sum 
i=0

(| \phi i| 2 +\Delta t\| \phi i\| 2) + TCf

2\eta k(\beta )
,

(4.11)

which implies (4.2).

Remark 5. Note that in order to obtain (4.6), the linear operator \scrL is required to
be self-adjoint, while using the Nevanlinna--Odeh approach in [25] can also deal with
\scrL , which is not self-adjoint.

5. Stability and error analysis of (2.11) for nonlinear parabolic type
equations. In this section, we use the stability result established in the last section
to carry out a stability and error analysis of (2.11) for nonlinear parabolic equations.

5.1. Stability. Under the local Lipschitz condition (2.2) on the nonlinear oper-
ator \scrG , we can derive a local stability result for (2.11) similarly as in the proof of the
linear case (cf. Theorem 2) if we further assume

C\beta 
k (\phi 

n)\in \scrB \phi (tn+\beta )(5.1)

with \beta > 1 for k = 2,3, and \beta \geq 2 for k = 4. Note that formally (5.1) must be true
when \Delta t is small enough since C\beta 

k (\phi 
n) is a kth-order approximation to \phi (tn+\beta ). We

shall defer the rigorous proof of (5.1) to subsection 5.3 by induction together with the
error analysis.

5.2. Truncation errors. Using the notation introduced in previous sections,
we define the truncation errors for k= 2,3,4 as

En+1
k :=\Delta t\phi t(t

n+\beta ) - A\beta 
k(\phi (t

n+1)),(5.2a)

Rn+1
k := \phi (tn+\beta ) - B\beta 

k (\phi (t
n+1)),(5.2b)

Pn
k := \phi (tn+\beta ) - C\beta 

k (\phi (t
n)).(5.2c)
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A NEW CLASS OF BDF AND IMEX SCHEMES 1627

It follows from (2.4), (2.6), and (2.8) that

En+1
k =\scrO (\Delta tk+1), Rn+1

k =\scrO (\Delta tk), Pn
k =\scrO (\Delta tk).(5.3)

More precisely, one can verify

En+1
k =

1

k!

k\sum 
q=0

ak,q(\beta )

\int tn+\beta 

tn+1+q - k

(tn+1+q - k  - s)k\phi (k+1)(s)ds,(5.4a)

Rn+1
k =

1

(k - 1)!

k - 1\sum 
q=0

bk,q(\beta )

\int tn+\beta 

tn+2+q - k

(tn+2+q - k  - s)k - 1\phi (k)(s)ds,(5.4b)

Pn
k =

1

(k - 1)!

k - 1\sum 
q=0

ck,q(\beta )

\int tn+\beta 

tn+1+q - k

(tn+1+q - k  - s)k - 1\phi (k)(s)ds.(5.4c)

Therefore, under suitable regularity requirements, we have

| En+1
k | 2 \leq C(\Delta t)2k+2, \| Rn+1

k \| 2 \leq C(\Delta t)2k, \| Pn
k \| 2 \leq C(\Delta t)2k \forall n+ 1\leq T

\Delta t
.

(5.5)

5.3. Error estimate. We denote em := \phi m  - \phi (tm), where \phi (tm) is the exact
solution of (1.1) at time tm, i.e.,

\phi t(t
m) +\scrL \phi (tm) + \scrG [\phi (tm)] = f(tm).(5.6)

We will use the following discrete version of the Gronwall lemma [26].

Lemma 2. Let yk, hk, gk, fk be four nonnegative sequences satisfying

yn +\Delta t

n\sum 
k=0

hk \leq B +\Delta t

n\sum 
k=0

(gkyk + fk) with \Delta t

T/\Delta t\sum 
k=0

gk \leq M \forall 0\leq n\leq T/\Delta t.

We assume \Delta t gk < 1 for all k and let \sigma =max0\leq k\leq T/\Delta t(1 - \Delta tgk) - 1. Then

yn +\Delta t

n\sum 
k=1

hk \leq exp(\sigma M)

\Biggl( 
B +\Delta t

n\sum 
k=0

fk

\Biggr) 
\forall n\leq T/\Delta t.

Theorem 3. Assume (2.2) and the solution of (1.1) is sufficiently smooth such
that (5.5) is true, and the stability condition

\eta k(\beta ) - 
\surd 
\gamma \geq \rho > 0(5.7)

is satisfied. Given \phi 0 = \phi (0) \in V , we assume \beta > 1 for k = 2,3, and \beta \geq 2 for k = 4,
and that \phi i, i = 1, . . . , k  - 1, are computed with a proper initialization procedure such
that

| \phi i  - \phi (ti)| 2, \| \phi i  - \phi (ti)\| 2 \leq C(\Delta t)2k, i= 1, . . . , k - 1, and C\beta 
k (\phi 

k - 1)\in \scrB \phi (tk - 1+\beta );

(5.8)

then for \Delta t sufficiently small, we have

C\beta 
k (\phi 

n+1)\in \scrB \phi (tn+1+\beta ) \forall n+ 1\leq T

\Delta t
(5.9)
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1628 FUKENG HUANG AND JIE SHEN

and

gk| en+1| 2 + \rho 

2
\Delta t

n+1\sum 
q=k - 1

\| Ck(e
q)\| 2 \leq C exp

\bigl( 
(1 - C\Delta t) - 1T

\bigr) 
(\Delta t)2k \forall n+ 1\leq T

\Delta t
,

(5.10)

where gk is a positive constant depending only on k, and C is a constant independent
of \Delta t.

Proof. We shall prove (5.9) and (5.10) by induction. Supposing we already have

C\beta 
k (\phi 

n)\in \scrB \phi (tn+\beta ) \forall n\leq m(5.11)

and (5.10) is satisfied with all n\leq m - 1, we need to prove

C\beta 
k (\phi 

m+1)\in \scrB \phi (tm+1+\beta ),(5.12)

and (5.10) is satisfied with all n\leq m.
Subtracting (5.6) with m= n+ \beta from (2.11) and multiplying by \Delta t, we obtain

A\beta 
k(e

n+1) +\Delta t\scrL B\beta 
k (e

n+1) = - \Delta t
\bigl( 
\scrG [C\beta 

k (\phi 
n)] - \scrG [\phi (tn+\beta )]

\bigr) 
+En+1

k +\Delta t\scrL Rn+1
k ,

(5.13)

where En+1
k , Rn+1

k are given in (5.2). We split \scrG [C\beta 
k (\phi 

n)] - \scrG [\phi (tn+\beta )] as

\scrG [C\beta 
k (\phi 

n)] - \scrG [\phi (tn+\beta )] =
\bigl( 
\scrG [C\beta 

k (\phi 
n)] - \scrG [C\beta 

k (\phi (t
n))]

\bigr) 
+
\bigl( 
\scrG [C\beta 

k (\phi (t
n))] - \scrG [\phi (tn+\beta )]

\bigr) 
=: Tn

1 + Tn
2 .

(5.14)

Taking the inner product of (5.13) with C\beta 
k (e

n+1), and splitting B\beta 
k (e

n+1) as in (3.5),
we obtain\bigl( 

A\beta 
k(e

n+1),C\beta 
k (e

n+1)
\bigr) 
+\Delta t\eta k(\beta )\| C\beta 

k (e
n+1)\| 2 +\Delta t

\bigl( 
\scrL D\beta 

k (e
n+1),C\beta 

k (e
n+1)

\bigr) 
= - \Delta t

\bigl( 
Tn
1 ,C

\beta 
k (e

n+1)
\bigr) 
 - \Delta t

\bigl( 
Tn
2 ,C

\beta 
k (e

n+1)
\bigr) 
+
\bigl( 
En+1

k ,C\beta 
k (e

n+1)
\bigr) 

+\Delta t
\bigl( 
\scrL Rn+1

k ,C\beta 
k (e

n+1)
\bigr) 
.

(5.15)

Next, we bound the right hand side of (5.15) with the help of the consistency esti-
mate. First, it follows from (2.8) that with \Delta t sufficiently small, we have C\beta 

k (\phi (t
n))\in 

\scrB \phi (tn+\beta ), and then for the terms with Tn
1 and Tn

2 , it follows from (2.2) and (5.11) that
for any given \varepsilon > 0,\bigm| \bigm| \bigl( Tn

1 ,C
\beta 
k (e

n+1)
\bigr) \bigm| \bigm| \leq \| Tn

1 \|  \star \| C
\beta 
k (e

n+1)\| \leq \varepsilon 

2
(\gamma \| C\beta 

k (e
n)\| 2 + \mu | C\beta 

k (e
n)| 2)(5.16)

+
1

2\varepsilon 
\| C\beta 

k (e
n+1)\| 2.

With Pn
k defined in (5.2), we have

\bigm| \bigm| \bigl( Tn
2 ,C

\beta 
k (e

n+1)
\bigr) \bigm| \bigm| \leq \| Tn

2 \|  \star \| C
\beta 
k (e

n+1)\| \leq 1

\rho 
(\gamma \| Pn

k \| 2 + \mu | Pn
k | 2) +

\rho 

4
\| C\beta 

k (e
n+1)\| 2

\leq C(\Delta t)2k +
\rho 

4
\| C\beta 

k (e
n+1)\| 2.

(5.17)
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A NEW CLASS OF BDF AND IMEX SCHEMES 1629

Similarly,

\bigl( 
En+1

k ,C\beta 
k (e

n+1)
\bigr) 
\leq 1

2\Delta t
| En+1

k | 2 + \Delta t

2
| C\beta 

k (e
n+1)| 2 \leq C(\Delta t)2k+1 +

\Delta t

2
| C\beta 

k (e
n+1)| 2

(5.18)

and

\bigl( 
\scrL Rn+1

k ,C\beta 
k (e

n+1)
\bigr) 
\leq 1

\rho 
\| Rn+1

k \| 2 + \rho 

4
\| C\beta 

k (e
n+1)\| 2 \leq C(\Delta t)2k +

\rho 

4
\| C\beta 

k (e
n+1)\| 2.

(5.19)

Now, under the stability condition (5.7), combining the assumption on the initial
steps (5.8) and estimations in (5.16)--(5.19), taking \varepsilon = 1\surd 

\gamma in (5.16), and following

the same process as in the proof of Theorem 2 to handle the terms on the left hand
side of (5.15), we can obtain the following from (5.15):

gk| en+1| 2 + \rho 

2
\Delta t

n+1\sum 
q=k - 1

\| C\beta 
k (e

q)\| 2 \leq C\Delta t

n+1\sum 
q=0

| eq| 2 +C(\Delta t)2k \forall n\leq m.(5.20)

Therefore, by applying the discrete Gronwall lemma 2 to (5.20), we can obtain

gk| em+1| 2 + \rho 

2
\Delta t

m+1\sum 
q=k - 1

\| C\beta 
k (e

q)\| 2 \leq C exp
\bigl( 
(1 - C\Delta t) - 1T

\bigr) 
(\Delta t)2k \forall m+ 1\leq T

\Delta t

(5.21)

with C a constant independent of \Delta t, which implies (5.10). Finally, it follows from
(5.21) and (2.8) that

\| C\beta 
k (\phi 

m+1) - \phi (tm+1+\beta )\| 2 \leq 2\| C\beta 
k (\phi 

m+1) - C\beta 
k (\phi (t

m+1))\| 2

+ 2\| C\beta 
k (\phi (t

m+1)) - \phi (tm+1+\beta )\| 2

\leq 2\| C\beta 
k (e

m+1)\| 2 +\scrO (\Delta t2k)

\leq \=C\Delta t2k - 1

(5.22)

with \=C a constant independent of \Delta t, which implies (5.12) for \Delta t sufficiently small.
Thus, the proof is complete with the induction.

Remark 6. Note that \eta k(\beta ) in (3.6) monotonically increases as \beta increases. On the
other hand, for many applications, given \delta > 0, one can choose \gamma < \delta with a suitable
\mu such that (2.2) is satisfied [6]. Hence, the stability condition (5.7) can always be
satisfied with these applications.

Remark 7. The analysis in Theorems 2 and 3 cannot be directly extended to the
standard BDF methods (with \beta = 1) since \eta k(1) = 0.

5.4. Comparison to the classical BDF and IMEX schemes. In this sub-
section, we compare the stability condition (5.7) to that of the classical BDF and
IMEX methods (with Taylor expansion at time tn+1) for which the stability condi-
tion (5.7) does not apply. So we shall derive below a corresponding stability condition
for the classical BDF and IMEX methods. To simplify the presentation, we assume
\mu = 0 in (2.2) since the general case can be handled by applying the discrete Gronwall
lemma as in Theorem 3.

The stability condition (5.7) in Theorem 3 is derived from\bigl( 
\scrL B\beta 

k (e
n),C\beta 

k (e
n)
\bigr) 
=
\bigl( 
\eta k(\beta )C

\beta 
k (e

n) +D\beta 
k (e

n),C\beta 
k (e

n)
\bigr) 

(5.23)

= \eta k(\beta )\| C\beta 
k (e

n)\| 2 +
\bigl( 
D\beta 

k (e
n),C\beta 

k (e
n)
\bigr) 
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1630 FUKENG HUANG AND JIE SHEN

and \bigl( 
\scrG [C\beta 

k (\phi 
n)] - \scrG [C\beta 

k (\phi (t
n))],C\beta 

k (e
n)
\bigr) 
\leq min

\varepsilon >0

\bigl( \varepsilon 
2
\| \scrG [C\beta 

k (\phi 
n)] - \scrG [C\beta 

k (\phi (t
n))]\| 2 \star 

+
1

2\varepsilon 
\| Ck(e

n)\| 2
\bigr) 

\leq min
\varepsilon >0

\bigl( \varepsilon \gamma 
2
\| C\beta 

k (e
n)\| 2 + 1

2\varepsilon 
\| C\beta 

k (e
n)\| 2

\bigr) 
\varepsilon = 1\surd 

\gamma 

=
\surd 
\gamma \| C\beta 

k (e
n)\| 2.

(5.24)

As a result, the stability condition (5.7) is derived by requiring \eta k(\beta )>
\surd 
\gamma since the

term
\bigl( 
D\beta 

k (e
n),C\beta 

k (e
n)
\bigr) 
can be handled by Lemma 1 and Theorem 1.

On the other hand, for the classical IMEXk (k= 2,3,4) schemes, i.e., (2.11) with
\beta = 1, the suitable multipliers are given as en  - \~\eta ke

n - 1 [25] and the smallest possible
values of \~\eta k are

\~\eta 2 = 0, \~\eta 3 = 0.0836, \~\eta 4 = 0.2878.(5.25)

Hence, the corresponding versions of (5.24) and (5.23) become\Biggl( 
\scrG 

\Biggl[ 
k - 1\sum 
q=0

ck,q(1)\phi 
n - k+1+q

\Biggr] 
 - \scrG 

\Biggl[ 
k - 1\sum 
q=0

ck,q(1)\phi (t
n - k+1+q)

\Biggr] 
, en  - \~\eta ke

n - 1

\Biggr) 

\leq min
\varepsilon >0

\Biggl( 
\varepsilon 

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \scrG 
\Biggl[ 
k - 1\sum 
q=0

ck,q(1)\phi 
n - k+1+q

\Biggr] 

 - \scrG 

\Biggl[ 
k - 1\sum 
q=0

ck,q(1)\phi (t
n - k+1+q)

\Biggr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

 \star 

+
1

2\varepsilon 
\| en  - \~\eta ke

n - 1\| 2
\Biggr) 

\leq min
\varepsilon >0

\Biggl( 
\varepsilon \gamma 

2

k - 1\sum 
q=0

| ck,q(1)| \| en - k+1+q\| 2 + 1

2\varepsilon 
\| en  - \~\eta ke

n - 1\| 2
\Biggr) 

\leq min
\varepsilon >0

\Biggl( 
\varepsilon \gamma 

2

k - 1\sum 
q=0

| ck,q(1)| \| en - k+1+q\| 2 + 1

2\varepsilon 
(\| en\| 2 + \~\eta 2k\| en - 1\| 2)

\Biggr) 
,

(5.26)

where ck,q(1) are defined in (2.12)--(2.14) with \beta = 1, and\bigl( 
\scrL en, en  - \~\eta ke

n - 1
\bigr) 
= \| en\| 2  - \~\eta k

\bigl( 
\scrL en, en - 1

\bigr) 
\geq \| en\| 2  - \~\eta k

2
(\| en\| 2 + \| en - 1\| 2).(5.27)

Combining (5.26) and (5.27), we obtain the following stability condition for the clas-
sical IMEX type scheme with multiplier en  - \~\eta ke

n - 1:

1 - \~\eta k >min
\varepsilon >0

\Biggl( 
\varepsilon \gamma 

2

k - 1\sum 
q=0

| ck,q(1)| +
1

2\varepsilon 
(1 + \~\eta 2k)

\Biggr) 
\geq 
\sqrt{} 

\~ck\gamma (1 + \~\eta 2k)(5.28)

with \~ck =
\sum k - 1

q=0 | ck,q(1)| . Comparing (5.7) with (5.28), we have two remarks:
\bullet From (5.25) and (5.28), we observe that for the classical IMEX schemes,

higher-order (i.e., larger k) requires a stronger stability condition on the pa-
rameter \gamma appearing in (2.2). It is this requirement on the time step that
limits the use of a high-order scheme in practice.
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A NEW CLASS OF BDF AND IMEX SCHEMES 1631

\bullet On the other hand, for the new class of IMEX schemes, we observe from (3.6)
and (5.7) that the stability condition on \gamma becomes weaker as we increase
\beta . In particular, the new higher-order schemes with a suitable \beta can be
stable with a larger time step than that which is allowed with a classical
IMEX scheme of the same order. For example, we have from (3.6) that
\eta 2(2) = \eta 3(3) = \eta 4(5) = 1/2, which indicates that the stability condition (5.7)
of the new fourth-order scheme with \beta = 5 and third-order scheme with \beta = 3
is the same as that of the second-order classical scheme. Our numerical results
in Example 3 below indicate that we can use the maximum allowable time
step of the second-order classical scheme in our new third- and fourth-order
schemes to obtain more accurate results.

Remark 8. Note that a new multiplier en  - 2
169e

n - 1  - 11
169e

n - 2 for the classical

BDF3 scheme is reported in [4] and since \^\eta 3 := 2
169 + 11

169 < \~\eta 3 = 0.0836, one can
obtain milder conditions on \gamma compared to adopting the Nevanlinna--Odeh multipliers.
Nevertheless, we can derive even milder conditions on \gamma by choosing larger \beta in our
new methods.

6. Extension to fifth order. In Theorem 1, we found suitable multipliers for
the second- and third-order schemes with \beta \geq 1 and for the fourth-order scheme with
\beta \geq 2. In this section, we would like to show numerically that the multiplier we found
in section 3 also works for the fifth-order scheme.

Following the same notation as before, we can obtain the coefficients a5,q(\beta ),
b5,q(\beta ), c5,q(\beta ) by solving the linear systems (2.5), (2.7), and (2.9) with k = 5, re-

spectively. Then we can define A\beta 
5 (\phi 

i),B\beta 
5 (\phi 

i),C\beta 
5 (\phi 

i) as in (3.1). Next, we split
B\beta 

5 (\phi 
n+1) as

B\beta 
5 (\phi 

n+1) = \eta 5(\beta )C
\beta 
5 (\phi 

n+1) +D\beta 
5 (\phi 

n+1) with \eta 5(\beta ) =
\beta  - 1

\beta + 15
(6.1)

and define \~A\beta 
5 (\zeta ),

\~C\beta 
5 (\zeta ),

\~D\beta 
5 (\zeta ) as in (3.2). Following the key steps in the proof of

Theorem 1, we present a sequence of numerical results to show that C\beta 
5 (\phi 

n+1) is a
suitable multiplier for the fifth-order scheme with 6.5\leq \beta \leq 100.

\bullet We have gcd
\bigl( 
\~A\beta 
5 (\zeta ), \zeta 

\~C\beta 
5 (\zeta )

\bigr) 
= gcd

\bigl( 
\~D\beta 
5 (\zeta ),

\~C\beta 
5 (\zeta )

\bigr) 
= 1 since \~A\beta 

5 (0) = a5,0 \not = 0
and

detSly( \~A\beta 
5 ,

\~C\beta 
5 ) =

\beta 12

221184
+

11\beta 11

110592
+

635\beta 10

663552
+

78937\beta 9

14929920
+

552809\beta 8

29859840

+
638383\beta 7

14929920
+

9801769\beta 6

149299200
+

4912619\beta 5

74649600
+

765683\beta 4

18662400

+
225157\beta 3

15552000
+

6143\beta 2

2488320
+

2071\beta 

10368000
+

1

160000
> 0

(6.2)

and

detSly( \~D\beta 
5 ,

\~C\beta 
5 ) =

\beta 3(\beta 3 + 6\beta 2 + 11\beta + 6)3

13824
> 0.(6.3)

\bullet Let r1, r2, . . . , r5 be the five roots of \~C\beta 
5 (\zeta ) = 0 and denote rmax =max1\leq i\leq 5 | ri| .

In Figure 4, we plot the numerical values of rmax for 0\leq \beta \leq 100. We observe
that rmax < 1 for 0 \leq \beta \leq 100, which implies \~C\beta 

5 (\zeta ) is holomorphic outside
the unit disk in the complex plane.
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1632 FUKENG HUANG AND JIE SHEN

Fig. 4. r\mathrm{m}\mathrm{a}\mathrm{x} with different \beta .

\bullet Following the same process as in the proof of Theorem 1, we can derive that

Re
\~A\beta 
5 (\zeta )

\zeta \~C\beta 
5 (\zeta )

> 0 for | \zeta | > 1 is equivalent to

1

180
(1 - y)f5(y)\geq 0 \forall y \in [ - 1,1],

where

f5(y) = \sigma 4(\beta )y
4 + \sigma 3(\beta )y

3 + \sigma 2(\beta )y
2 + \sigma 1(\beta )y+ \sigma 0 \geq 0 \forall y \in [ - 1,1](6.4)

with

\sigma 4(\beta ) = 5\beta 8 + 70\beta 7 + 390\beta 6 + 1090\beta 5 + 1539\beta 4 + 820\beta 3  - 350\beta 2

(6.5a)

 - 540\beta  - 144,

\sigma 3(\beta ) = - 20\beta 8  - 280\beta 7  - 1550\beta 6  - 4260\beta 5  - 5836\beta 4  - 3024\beta 3 + 950\beta 2

(6.5b)

+ 1396\beta + 336,

\sigma 2(\beta ) = 30\beta 8 + 420\beta 7 + 2310\beta 6 + 6240\beta 5 + 8244\beta 4 + 3932\beta 3  - 1260\beta 2

(6.5c)

 - 1340\beta  - 204,

\sigma 1(\beta ) = - 20\beta 8  - 280\beta 7  - 1530\beta 6  - 4060\beta 5  - 5136\beta 4  - 2072\beta 3 + 1070\beta 2

(6.5d)

+ 652\beta + 36,

\sigma 0(\beta ) = 5\beta 8+70\beta 7+380\beta 6 + 990\beta 5 + 1189\beta 4 + 344\beta 3  - 410\beta 2  - 168\beta + 336.

(6.5e)

\bullet On the other hand, we can also show that Re
\~D\beta 
5 (\zeta )

\~C\beta 
5 (\zeta )

> 0 for | \zeta | > 1 is equivalent

to

h5(y) = \mu 4(\beta )y
4 + \mu 3(\beta )y

3 + \mu 2(\beta )y
2 + \mu 1(\beta )y+ \mu 0(\beta )\geq 0 \forall y \in [ - 1,1]

(6.6)

with
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A NEW CLASS OF BDF AND IMEX SCHEMES 1633

\mu 4(\beta ) =
\beta (\beta 2 + 3\beta + 2)2(6\beta 3 + 37\beta 2 + 48\beta  - 27)

18(\beta + 15)
,

(6.7a)

\mu 3(\beta ) = - \beta (24\beta 7+292\beta 6+1366\beta 5+3013\beta 4+2881\beta 3+193\beta 2 - 1391\beta  - 618)

18(\beta +15)
,

(6.7b)

\mu 2(\beta ) =
\beta (12\beta 7+146\beta 6+670\beta 5+1385\beta 4+1021\beta 3 - 553\beta 2 - 1127\beta  - 402)

6(\beta +15)
,

(6.7c)

\mu 1(\beta ) = - (24\beta 8+292\beta 7+1314\beta 6+2527\beta 5+1203\beta 4 - 2405\beta 3 - 3117\beta 2 - 1008\beta  - 270)

18(\beta +15)
,

(6.7d)

\mu 0(\beta ) =
6\beta 8+73\beta 7+322\beta 6+571\beta 5+91\beta 4 - 926\beta 3 - 995\beta 2 - 312\beta +18

18(\beta +15)
.

(6.7e)

In Figure 5, we plot the minimum values of f5(y) and h5(y) in [ - 1,1] with
1 \leq \beta \leq 100, which show (6.4) is true for 1 \leq \beta \leq 100 and (6.6) is true for
6.5\leq \beta \leq 100. Therefore, we have numerically verified that Theorem 1 is also
true for (2.11) with k= 5 and 6.5\leq \beta \leq 100.

Remark 9. The choice of \eta 5(\beta ) in (6.1) is not unique, and the range 6.5\leq \beta \leq 100
is not necessarily the largest possible. But our numerical results indicate (6.4) and
(6.6) do not hold for some \beta > 100.

For the sixth-order scheme, our numerical results show there exists | r6| > 1, which
is one root of \~C\beta 

6 (\zeta ) = 0, and this implies that it is not holomporphic outside the unit
disk. Hence, the proof in Theorem 1 cannot be extended to the sixth order.

7. Numerical examples. In this section, we provide some numerical approxi-
mations of the Allen--Cahn [7] and Cahn--Hilliard [11] equations to validate our theo-
retical results and to show the advantages of the new IMEX schemes (2.11).

Given a free energy

\scrE [\phi ] =
\int 

1

2
| \nabla \phi | 2 + 1

4\varepsilon 2
(1 - \phi 2)2d\bfitx ,(7.1)

Fig. 5. Minimum value of f5 and h5 in [ - 1,1] with different \beta .
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1634 FUKENG HUANG AND JIE SHEN

we consider the H - \alpha gradient flow,

\partial \phi 

\partial t
= - m( - \Delta )\alpha 

\biggl( 
 - \Delta \phi  - 1

\varepsilon 2
\phi (1 - \phi 2)

\biggr) 
+ f(t), \alpha = 0 or 1,(7.2)

where f is the given source term. When \alpha = 0, (7.2) is the standard Allen--Cahn
equation; when \alpha = 1, it becomes the standard Cahn--Hilliard equation.

Example 1. In the first example, we validate the convergence order of the new
schemes. Considering a two-dimensional domain (0,2)2 with periodic boundary con-
ditions, let \alpha = 0 and m= \varepsilon = 0.2 in (7.2), and f is chosen such that the exact solution
of (7.2) is

\phi (x, y, t) = esin(\pi x) sin(\pi y) sin(t).(7.3)

We use the Fourier Galerkin method with Nx=Ny= 40 in space so that the spatial
discretization error is negligible compared to the time discretization error. In Figure 6,
we plot the convergence rate of the L2 error at T = 1 by using the second- to fourth-
order schemes (2.11). We observe the expected convergence order for all the cases
with different \beta . We also observe that for the same order, the error increases slightly
with larger \beta .

Example 2. In the second example, we solve a benchmark problem for the Allen--
Cahn equation [12]. Consider a two-dimensional domain ( - 128,128)2 with a circle of
radius R0 = 100. In other words, the initial condition is given as

\phi (x, y,0) =

\Biggl\{ 
1, x2 + y2 < 1002,

 - 1, x2 + y2 \geq 1002.
(7.4)

By mapping the domain to ( - 1,1)2, the parameters in (7.2) are given bym= 6.10351\times 
10 - 5, \varepsilon = 0.0078, \alpha = 0, and f = 0. In the sharp interface limit, the radius at time t
is given by

R=
\sqrt{} 
R2

0  - 2t.(7.5)

We use the Fourier Galerkin method with Nx = Ny = 512 in space. Then we fix
\Delta t= 0.75, which is the maximum time step we can use for the classical second-order
scheme to get acceptable numerical results, and use (2.11) with different orders and
different \beta . We plot the computed radius R(t) in Figure 7, which shows that we can
use higher-order schemes with the same large time step as the second-order schemes
by choosing \beta > 1. More importantly, we can get much more accurate results with
higher-order schemes. Here, k= 1, \beta = 1 represent the usual first-order scheme.

Fig. 6. Convergence test for the general IMEX type methods. From left to right: second-order,
third-order, and fourth-order schemes with different \beta .
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A NEW CLASS OF BDF AND IMEX SCHEMES 1635

Fig. 7. The evolution of radius R with \Delta t= 0.75 under different schemes.

Fig. 8. Comparisons of different order schemes with different \beta for the Cahn--Hilliard equation.

Example 3. In the third example, we consider the Cahn--Hilliard equation in a
two-dimensional domain (0,1)2 with periodic boundary condition and let \alpha = 1,m= 1,
\varepsilon = 0.02 in (7.2). The initial condition is given as \phi (0) = 0.2 + r, and r is a random
perturbation variable with uniform distribution in [ - 0.02,0.02]. We use the Fourier
Galerkin method with Nx=Ny= 128 in space. In Figure 8, we compare the first- to
the fourth-order schemes with different \beta ; the reference solution is generated by using
the classical fourth-order scheme with sufficiently small time step \Delta t= 5\times 10 - 9.

Several observations are in order:
1. We take \Delta t= 7.5\times 10 - 8, which is the maximum allowable time step for the

classical second-order scheme, and observe in Figure 8(a) that we can use the
same time step for the higher-order schemes by choosing a suitable \beta > 1 and
obtain more accurate results.

2. We observe in Figure 8(b) that the usual third- and fourth-order schemes
with \beta = 1 are unstable, but we can get correct solutions with the third- and
fourth-order schemes by choosing a suitable \beta > 1.

3. We also observe in Figure 8(b) that \beta too large may lead to inaccurate results
due to larger truncation errors.

8. Concluding remarks. We presented in this paper a new class of BDF and
IMEX schemes for parabolic type equations based on the Taylor expansion at time
tn+\beta with \beta > 1 being a tunable parameter. The new schemes are a simple generaliza-
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1636 FUKENG HUANG AND JIE SHEN

tion of the classical BDF or IMEX schemes with essentially the same computational
efforts. However, they enjoy a remarkable property that their stability regions increase
as the parameter \beta increases, making it possible, by choosing a suitably large \beta , to use
high-order schemes with larger time steps that are only allowed with lower-order clas-
sical schemes. We also identified an explicit uniform multiplier for the new schemes of
second- to fourth-order and carried out a rigorous stability and error analysis by using
the energy argument. We also presented numerical examples to show the benefit of
using higher-order schemes with a suitable \beta > 1.

This class of new BDF and IMEX schemes makes it possible to use higher-order
schemes for highly stiff systems with reasonably large time steps and can be easily
implemented with a minimal effort by modifying the code based on the classical BDF
or IMEX schemes. Thus, it provides a much needed improvement on the stability of
higher-order schemes. The idea behind the new class of BDF and IMEX schemes is
very simple but original and can be extended to other type of numerical schemes.
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