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Abstract. We present a novel optimization algorithm, a relaxed vector auxiliary variable
(RVAV), that satisfies an unconditional energy dissipation law and exhibits improved alignment
between the modified and the original energy. Our algorithm features rigorous proofs of linear con-
vergence in the convex setting. Furthermore, we present a simple accelerated algorithm that improves
the linear convergence rate to superlinear in the univariate case. We also propose an adaptive version
of RVAV with Steffensen step size. We validate the robustness and fast convergence of our algorithm
through ample numerical experiments.
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1. Introduction. Optimization of neural network parameters is an area of ac-
tive research with significant progress in recent years. However, it continues to pose
formidable challenges, mainly due to vanishing gradients [9], overfitting [13], and the
necessity for adaptive learning rate methods to avoid convergence to local minima
[12, 28]. Several approaches, such as batch normalization [10] and adaptive gradient
descent with energy (AEGD) [14], a relaxed scalar auxiliary variable (RSAV) [15, 29],
have demonstrated promise in addressing some of these obstacles. The most com-
monly used approach for obtaining the update rule involves reducing a nonconvex
loss function, for instance, the mean square error, f(x)= % Ziil(yz —9i(x))? [16].

In the realm of mathematical optimization, it is customary to investigate the
feasibility of unconstrained minimization problems that take the form

(1.1) Inin f(z).

In this setting, we assume the function f :R"™ — R is differentiable. Notably, this
formulation represents a fundamental optimization problem that encompasses linear
programming and least-square problems as particular cases. Furthermore, it has a
complete analytical theory, as established in [4].

In the 1980s, a connection between the unconstrained minimization problem (1.1),
in which the target function f(x) is to be minimized over R", and an ordinary dif-
ferential equation (ODE) problem was established [5, 18, 33]. Specifically, a gradient
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descent (GD) method for problem (1.1), ! = " — AtV f(z"(t)), can be considered
as a numerical scheme of a gradient flow,

(1.2) @ fa(t)),

dt

where the initial point is (0) = o. A minimizer * of f(x) is then obtained as
x* =lim;_, oo (t), where x(t) satisfies (1.2), and the optimal value of f(x) is defined
as f* = f(x*). Recently, there has been significant research examining the connection
between minimization problems and ODE problems, including investigations into Nes-
terov’s accelerated gradient (NAG) [26]. In the domain of machine learning, NAG has
risen to prominence as a robust optimization tool, underscoring the need for effective
numerical methods for solving such problems.

Additionally, (1.2) belongs to a notable class of ODEs known as gradient flows,
which are ubiquitous in various fields such as fluid dynamics and material science
problems [1, 2, 6]. It is desirable, sometimes necessary, for the numerical scheme to
adhere to fundamental physical laws, including the energy dissipation law w <0.
Certain contemporary literature has proposed several energy-dissipative numerical
schemes, including the convex splitting schemes [7, 8, 19|, stabilization methods
[23, 32, 27, 30], scalar auxiliary variable (SAV) methods [20, 21, 22|, and invariant
energy quadratization (IEQ) approaches.

The treatment of the minimization problem as a gradient flow problem has gained
popularity in optimization algorithms due to its robustness and generality. Recently,
Liu and Tian [14] developed AEGD, which applied the TEQ to the optimization
process, and Liu, Shen, and Zhang [15] applied the relaxed SAV technique to op-
timization. These methods ensure unconditional energy dissipation by introducing
a kind of modified energy. However, the introduced modified energy may exhibit
inconsistencies with the original energy, as the original energy may not necessarily
monotonically decrease during iterations. Despite its potential, several challenges re-
main in the application of gradient flow methods to minimization problems. One of
the challenges faced in designing optimization algorithms based on gradient flow is to
maintain the physical law while designing the numerical scheme. Another challenge
is to improve the convergence rate by selecting an appropriate step size. Avoiding os-
cillations in GD methods is also a challenge that needs to be addressed. Additionally,
incorporating an adaptive algorithm can help save computation costs. To improve
the performance of optimization algorithms based on gradient flow, further research
is needed to address these challenges.

Within the context of the SAV approach, a new variable r =/ f(x(t)) is defined as
the scalar auxiliary variable, and subsequently, an extended system needs to be solved.
This approach, however, introduces two primary challenges in optimization. First, the
numerical solution r"*! may significantly deviate from +/f(x(t,+1)). Second, r"*!
is prone to vanishing, especially as the dimensions of x(t) increase, leading to the
vanishing of the learning rate At

rntt
V(@)
from the enhancement in TEQ and SAV presented in [11], the consistency between
the modified and the original energy can be achieved by incorporating a relaxation
step at the conclusion of each iteration. To prevent the vanishing of r™+!, it is
feasible to introduce a SAV for each element of x, a method we will refer to as a
vector auxiliary method (VAV). Here, we propose a new approach, the relaxed vector
auxiliary variable (RVAV), in which the auxiliary variable is a vector instead of a scalar

and a relaxation step is applied, allowing more flexibility in adjusting the learning

when r”*1 does vanish. Drawing inspiration
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rate elementwise. Importantly, the introduced modified energy remains dissipative

unconditionally, where the modified and original energy are inherently connected.
More precisely, the unconditionally modified energy dissipation can be obtained

for each element of the vector «, which facilitates the use of adaptive step size during

iteration. To achieve this, we define an indicator, o = meaun(\/%)7 such that we
v
can adjust the step size At according to the indicator’s deviation from 1 and with

the Steffensen step size [31], leading to an adaptive version of the RVAV, which,
hereafter referred as ARVAV, may avoid oscillation and accelerate the convergence.
We will show that by selecting the appropriate step size, the real energy will also be
dissipative, which allows us to prove that it converges linearly. We also show that the
convergence rate can be accelerated to superlinear in the univariate case.

In conclusion, our primary advancements include the following:

1. We propose a novel optimizer in Algorithm 2.1, RVAV, designed to signif-
icantly improve the performance of RSAV in high-dimensional problems,
particularly in the context of machine learning. Compared to RSAV, RVAV
mitigates the issue of vanishing modified energy by applying SAV in an ele-
mentwise manner before converging to the optimal value, which could other-
wise halt the convergence.

2. We provide a rigorous proof of the convergence rate for the RSAV and RVAV
algorithms in the convex setting in section 3.

3. We demonstrate that in the univariate case, the linear convergence rate can
be elevated to a superlinear rate in section 4.

4. We introduce an indicator to monitor the performance of the optimization
process and propose the ARVAV algorithm, which incorporates the indicator
and provides guidelines on how to modify the step size when the indicator
exceeds a certain threshold.

5. Through numerical experiments in section 5, we demonstrate that our algo-
rithm achieves high accuracy and fast convergence.

The structure of this article is outlined as follows. Section 2 introduces the proposed
RVAV algorithm. Section 3 presents the convergence analysis of RSAV and RVAV in
the convex setting. We propose in section 4 an enhanced RVAV algorithm and show
that it has a superlinear convergence rate. In section 5, several numerical experiments
are presented to validate the effectiveness of the new algorithm, followed by some
conclusions in section 6.

2. The RSAV and RVAV algorithms. We start by recalling the SAV and
RSAV schemes introduced in [15] for optimization problems, followed by the construc-
tion of VAV and RVAV schemes. We also show that these schemes are unconditionally
stable with the modified energy.

2.1. SAV and relaxed SAV. In general, we can split the cost function as
follows:

(21) f(@(6) = 5 (£, 2) + | @)~ 5(E0e,2)|

where L(t) is a self-adjoint positive semidefinite linear operator. In this paper, we
mostly consider the trivial splitting £(t) = 0 or (L(t)x); = \i(t)zi, ¢ = 1,2,...,m,
where = (1, Za2,...,Tiy ..., Tm).

Assuming, without loss of generality, f(x) >0 >0 Vi, we can define an auxiliary
scalar variable as r(t) = 1/ f(«(t)), and subsequently extend the gradient flow (1.2) to
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dx r
dr rda

2.3 t .
(23) (20"
If we consider r(0) =/ f(x|t=0), then the solution x of (1.2) along with r(¢) =/ f(x)
also represents a solution pair for the above-expanded system.

Then, we consider the following time discretization scheme for the expanded sys-

tem:

anrl — " ,,,n+1

(2.4) N LM —a) + W f(x") =0,
,,,n—‘rl —rn _ 1 " Twn—&-l —_ "
(25) IR e AR v

where we assume L™ &~ L(t,) to be self-adjoint and positive semidefinite. In the
following context, we will refer to f(x"!) as the “original energy” and (r"*1)? as
the “modified energy.”

The above SAV scheme is very efficient, since the coupled system (2.4)-(2.5) can
be decoupled into two linear systems of the subsequent structure [21]:

(2.6) ax+ Lz =h.

The scheme (2.4)—(2.5) is unconditional energy dissipative for the modified energy
(r"*t1)2. However, the equation used to compute r"*! has little correlation with

\/f(x"+1), leading to inconsistencies between "1 and /f("*+1) in numerical ex-

periments. To address this issue, we adopt a relaxation step [11] that strengthens the
relationship between r"*1 and \/f(z"*!). More precisely, the RSAV scheme is as
follows:

n+1l _ .n ~n+1
rn

7:n+1 —rn 1 mn—&-l — "

2.8 = V(e =——M=
(28) s = s e

(29) 7,,n-‘rl _ 770Fn+1 + (1 _ 770) /f(wn+1)7

where, for a given ¢ € (0,1), o is the smallest number in [0, 1] such that
(210) (’I“n+1)2 _ (,,:n+1)2 S inwn-i-l _ :L,n||27
At
where 1 is a parameter of our choice and is usually set as ¢ = 0.95 in practice. We

refer to [11] (see (2.18) below) for an explicit formula to determine 7.

2.2. VAV and RVAYV schemes. The scheme (2.4)-(2.5), in the case of L™ =0,

can be interpreted as a GD scheme with a single learning rate At . However, it
p g g )

may converge slowly if the components of V f(x™) have large variations. In this case,
it is preferable to have elementwise learning rates. To this end, we modify the SAV
scheme (2.4)—(2.5) into the following VAV scheme:
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n+1 n n+1
Tt — it of(z")
(2.11) (L™ —x™)) + =0, =1,2,...,m,
At ,/ ;L-" al’z
ritt 1 of (™) a ™t —ap
(2.12) ! L= i oo i=1,2,...,m

At _QW Ox; At

Note that with £® = 0, the above scheme is essentially the same as the AEGD
algorithm in [14].

Let r = (r1,79,...,74,...,7m) be denoted, with (-,-) and || - || representing the
inner product and norm, respectively, in R™.

THEOREM 2.1. The VAV algorithm (2.11)—(2.12) is unconditionally energy dissi-
pative, characterized by the fact that

[l = flr |2 = = [l =2

I
1 n+1 n|2
Ktllw —a"[|7<0.

In particular, if (L"x); = Al'x; with A\ >0 Vi,n, we have the elementwise inequality

o (En(wn+1 o mn)’anrl _ mn) o

(rrth2 — (rm)? < —E(x?"‘l —2")?<0 for1 <i<m.

Proof. Multiplying (2.11) (resp., (2.12)) with 2?"*t* — 27 (resp., 2r/T'At) and
taking the sum of the results, we derive

() = ()2 + (T = )?

2.13 1
21 (L@ =) (@ =) - (e )
Summing up (2.13) for i =1,2,...,m, we derive

7 = fl [+ [l =2

n+1 _$71H2. ]

_ _(ﬁn(mn+1 _ mn)7wn+l _ wn) _ 7Hw

At

Remark 2.2. For general L™, the components (x71!, ... 2%F1) in (2.11)-(2.12)
are coupled. However, if (£"2); = APz;, then {z7T'} in (2.11)-(2.12) are decoupled
from each other and can be efficiently solved.

Accordingly, we can construct the RVAV scheme as follows: For i=1,2,...,m,
n+l n ~n—+1
(2'14) Ly T 4 (Ln(wn+1 n ) Tz af( ) _ 0’
At A / 33” 61‘1
~n+1 n n+1 n
ntl _ 1 il
(2'15) ,rl T’L — 8f( ) Z :I:Z ,
At 24 /f(x") ox; At
(2.16) ritt = mior 4 (1= i)/ f (=),
where, for a given 9 € (0,1), n;o is the smallest number in [0, 1] such that
(217) () = () S A (o0 =)

Following [11], n;0 can be determined as follows:

Ni0 = min n; such that
n:€[0,1]

(771 n+1 (1 o 77i) f(a:”“))2 _ (7:;1+1)2 <

e
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which can be reduced to

(2.18) Nio = m[ln ]171 such that an? + bn; + ¢ <0,
0,1

where
a=(/flantl) —ip*h)?,

(2.19) b=2v/fla" (7 =/ flznt1)),

n ot 13 ¢ n n
o= Jl@ ) - (1Y - (et gy
Ifa=0,ie., 7" = /f(x"1), we set n;0 = 0. Otherwise, the solution to the problem
(2.18) can be written as

(2.20) o

{ —b—Vb? — dac }
Nio =max{ —— 0 » .
It is easy to check that b? — 4ac >0 for any At.
Assuming that (L"x); = A'a;, the RVAV algorithm is given in Algorithm 2.1.

THEOREM 2.3. The RVAV algorithm (2.14)—(2.16) is unconditionally energy dis-
sipative, characterized by the fact that

(2_21) H,r,n—&-1||2 _ HrnHQ S —(ﬂ"(:l:"+1 _ wn)7mn+1 _ wn) _ %Hwn-&-l _ wnHQ S 0.

In particular, if (L"x); = Al'@; with A\ >0 Vi,n, we have the elementwise inequality

1-9

(2.22) (7= ()P < -

3

(z —2?)? <0 for1<i<m.

Proof. The proof is exact as in Theorem 2.1, instead of (2.13), we can obtain

1
(P (P =) = =L (@ =)y (e ) — (),

Algorithm 2.1. RVAV.

Given a starting point ° € domf, a step size At, r% =/ f(x%)(1,1,...,1) and
set n=0, ¥ €(0,1).
while the termination condition is not met do

~n af (™ “1.n .
Compute 7' = (1 + 2(1+At§;)f(mn)( J;(zi N2)=1pn for i=1,....m
~n+1
Update z ™! =2 — At(1 + At/\?)“%a’c@(: ) fori=1,.

Set 7«7‘+1:77-7W+1 + (1—m)/flxntl) fori=1,...,m
Compute 7710 = min,, ¢jo,1) 7 such that (r nhh2 _(Frth)2 < Ai (2} ntl xz”)Q for
1=1,.
Update r?“ N0+ (L—mi0)\/f(xn D) for i =1,.
Update n=n+1
end while
return z"*!
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Hence, summing up the above with (2.17), we find

1—
(223) () - (1) < (L@ @) () - Ly,
which implies (2.22) if (L"x); = Alz; with A\? > 0. Summing up (2.23) for i =
1,2,...,m, we obtain (2.21). |

2.3. VAV versus SAV: Addressing vanishing variables in high-
dimensional problems. In both SAV and VAV, the modified energy variable, r",
tends to decrease. Ensuring that ™ does not vanish before convergence is crucial, as
its disappearance would halt algorithmic progress.

For the SAV method, according to (2.4) and (2.5), we have

n+1l _ At n\T ny—1 n - n
r _(1+2f(m”)vf(w V(I +ALL") TV f(x )) r’.
In high-dimensional problems, particularly in machine learning and deep learning, the
weighted norm squared of the gradient, V f(x™)T (I + AtL")"1V f(x"), escalates as
the dimensions of ™. This escalation can drive r"*! toward zero. Should r"*! vanish
before the optimal point is reached, the algorithm will cease to progress and fail to
find the optimal point.

In contrast, the VAV method, as delineated by (2.11) and (2.12), presents a
different scenario:

-1
At L (of(@)? _
n+1l _ n 1 n —
T _<1+2f(:c”)(1+At)\l) < oz, ) roi=1,...,m.

Here, the term (1 + At)\?)*l(%?f is typically much smaller than V f(x™)T (I +
AtLY) IV f(x™). As a result, T?H is less likely to vanish. Consequently, VAV offers
a more reliable method for high-dimensional optimization, reducing the risk of pre-

mature termination of the algorithm. The analysis concerning the risk of vanishing
variables is similarly applicable to RVAV and RSAV.

3. Convergence analysis of the RSAV and RVAYV schemes. In this section,
we assume f(x) to be L-smooth (see the definition below) and carry out a convergence
analysis for the RSAV and RVAV schemes. We note that for the special case of £L =0,
the rate at which both SAV and VAV schemes converge was established in [14]. We
also note that in [15], the SAV scheme was formulated as a line search method and
some convergence criteria were derived.

DEFINITION 3.1. A function f is L-smooth if there is a nonnegative constant
L with |[Vf(x) —Vf(y)| < L||x—yl|| holding Va,y € R", i.e., Vf is L-Lipschitz
continuous.

3.1. Positive lower bound of r™ for the RSAV scheme. The convergence
theory of GD emphasizes the importance of maintaining the learning rate above a
certain positive constant. As evidenced in [14], for the SAV scheme (2.4)—(2.5) when
L =0 and f is L-smooth, the term r" remains bounded above a positive constant.
We show below that this is also true for the RSAV scheme (2.7)—(2.9).

Let us denote g(x) =/ f(x), and it can be readily demonstrated that g(x) is also
bounded below with a positive constant v/§. We can rewrite (2.7)—(2.8) as

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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anrl —z" n/.n+1 n ~n+1 n
fn+l —rn wnJrl —_ "
(3:2) ——— = V&) ——,
At At
(3.3) P = e T 4 (1 —mo)g(z™ ).

THEOREM 3.2. Suppose that f is L-smooth with a positive lower bound &, and let
r™ be generated by the RSAV scheme (2.7)—(2.9) with L being positive semidefinite.
Then lim,, o, €™ = x*, and there exists a positive constant Cy such that for At < Cy,
we then obtain

lim r" =r* > ﬁ >0, and Vf(x*)=0.
n— 00 2
Proof. First, it is easy to show that for an L-smooth function f, if f has a positive
lower bound 4, then g is Ly-smooth with L, = %.
Taking the inner product with (! — ") of (3.1) and combining it with (3.2),
we obtain

()7 = 0 4 (=) = = - e - (£ e, e g

Summing up the above with (2.10), since L™ is positive semidefinite, we can obtain

At
(3.4 e+ = < 7= (079 = (7))
1-9
Hence, (r"T1)? is a decreasing sequence and will converge to (7*)? for some r* > 0. It
remains to show r* > 0.

Taking the sum of the aforementioned for n=0,1,2,..., we find
> At
& >l -l < = (6)" =)

Hence, lim,,_,, ™ = x*. On the other hand, we derive from (3.1)-(3.2) that

n

(3.6) Frl = :
' 1+ 2AtVg(z™)T (I + AtLY) " 1Vg(z™)’
Hence we have #7t1 >0 if 70 > 0. Furthermore, we observe from (2.9) that il g
actually a convex combination of 7"+ and g(z"*1). Hence r"*1 >0 and it is also a
decreasing sequence.
Without loss of generality, let’s consider a positive integer NV such that the in-
equality 7 < /6 holds ¥n > N. If this were not the case, we could logically infer that
r* >/8. As a result, for every n > N, we can consequently derive

(3.7) 0<7" <r" <g(z").
For any n > N, we derive from (3.4), Taylor expansion, (3.2), and (3.7) that

L
(88) gl <gl@") + V(@) (a" — ") + L2 —a" |’
L
Sg(mn) +7:n+1 — 4 ?g”anrl N wnHQ

o).

Sg(a:n) +Tn+1 —7“” T
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Summing up the above from N to K, we obtain

(- )

As x* is the optimal point of f(x) and g(x) = +/f(x), * is also the optimal point of
g. Letting K go to +oo in the above, since g(z*) < g(xX*!), we obtain

s ()= 07).

(3.9) gt < g(a™) 4 rEH — N 4

(3.10) g(x*) < g(sr:N) +rr—rN 4

from which we can derive

AtL, (TN>2.
2(1-9)
Next we bound the difference between ¥ and g(x). We derive from (3.3) that
(3.12) r =g (&) =nom™ —nog (&) =m0 (¥ — g (")) .
By (3.2) and Taylor expansion,

PN Nl oy (2N (2 — VY

—g (mN) _g (wN—l) _ % (wN _ :L,N—l)T VQg(gN) (:BN _ mN—l) )
Hence, with the notation ||a||%, = a” Ha, we find from the above that

~ _ _ 1 12
P =g (@) =" =g (2" = Slla =2 gey ey
e 1 .
=m0 (P71 =g (@V71) = Sl = 2 ey

_ _ 1 _ _
=1 (’I“N 2 —g (xN 2) _ §||$N 1_ wN 2|2V2g(§N1))
1
2

(3.11) > g(x*) +rV — ga™) -

2

12
=5 20" ll2* = 2" g yqg,).

k=1

=770(7’ —9

l\D\»—A

Since 7’ = g (¢°) and o’ (V3g)a < LgHaH , we have
[ — Z” e — 24 e e

< %Z — 2%

Noting that [|z™+! — z"||” < ﬁ—ip((r")Q — (r"*t1)2) Vn, we have

e 2( -(*7)

k( ).

(3.13)

2

(3.14)
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Hence, we derive from the above and (3.12) that
LAt 2 2
P = gl@M] <mgrt=rs ()= (7))

Letting Cy = %g(w*)/(mﬁ(ro)2 +(1- 770)2(1wa) (r)?), we find from the above
and (3.11) that for At <, we have

AtL 21 Ve
* * N N N *
Finally, letting n — oo in (2.7), we find V f(z*) = 0. The proof is complete. O

3.2. Positive lower bound of r for the RVAV scheme. The study con-
ducted in [14] demonstrates that When L =0 and f is L-smooth, the values of r}
originating from the VAV scheme (2.11)—(2.12) exhibit a positive lower bound. As-
suming (L"x); = Alx; with A > 0 Vi,n, we show below that {r]'};=1 . of the
RVAV scheme (2. 14) (2.16) are bounded from below by a positive constant.

We first rewrite (2.14)—(2.16) as follows:

J";H_l B l‘? n(.n+1 n ~n+1 n
(3.16) T (L@ — et = -2 g ),
(3.17) L = o) (a7 = a7,
(318) n+1 = ;7] n+1 4 (1 _ ) ( rL+1>

THEOREM 3.3. Suppose f is L-smooth with a positive lower bound §, and (L"x); =
Alx; with A > 0 Vi,n. Let r be generated by the scheme (2.14) (2.16), Then we
have lim,, o, " =x*. And there exists Cy >0 such that for At < Cs, we have

lim r} =7} >ﬁf0r1<z<m and V f(x*) =0.

n—oo
Proof. With the assumption on £", the scheme (2.14)—(2.16) is decoupled for
each ¢, and similarly to (3.6), we can derive

n

(3.19) el = i

=1,...,m.
i L 288(1+ AN (Dig(am)2 '~

Hence, along with (2.23), we derive that r > 0 is a decreasing sequence so that
lim,, o0 " =r;. We only need to show that 7 >0 for 1 <i<m.
We first split M :={1,2,...,m} into I; and I, where

(3.20) L={ieM:r?>ViV¥n}, Li=M\I.

Note that {r"} are decreasing sequences Vi. Then for any ¢ € I, we can conclude that
ry > V3. So we only need to show that for any i € I, ry > 0. We can characterize I
as

(3.21) I, ={ie M :3N;, such that ' <8, Vn > N;}.

For any i € Iy, we have 7 < V/§ < g(z") for any n > N, where N = max;cz, N;. We
observe from (2.16) that 77 is a convex combination of 7 and g(z™), so we have

(3.22) <y < g(z").

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/16/25 to 198.2.210.234 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C136 S. ZHANG, J. ZHANG, J. SHEN, AND G. LIN

From (2.23), we obtain

At
(3.23) (a7t —ap)’ < ((F7)2 = (PPt 1)2) i= 1,2, m.
(1-17)

Taking the sum of the aforementioned for n=0,1,2,..., we find

> At
(3.24) S (artt —ap)’ < (02 = (17)2),i=1,2,...,m,

2 1—0)
which implies that lim,, o 2} =z}, i=1,2,...,m. Since fl-”'l <r?Vn,iand 7 <rl

for n > N and i € I5, we have that for n > N,

L
(3.25) g(w”+1)Ssﬂw")4fvb(w")(w"+14*w")+*7fo”+1‘*$”H

+Zazg n+l :L) _i_%i(xzhkl_x?)Q
=1
=n n AtL - n\2 n 2
+z et gy (- ()
n AtL,
SR DU i PP

i€l %
AtL “ 2
n n+1 n g n\2 n+1
(m)+zri —ri"‘mz (ri)” = (] ))
i€ly i=1
Summing up the above from n= N to K, we obtain
K+1 N K+1 _ N | AtL - P
(326) 9@ ) s g(@™)+ Yo riH = b e S () )’).
icly z:l

Let K go to +o0, and we know g(z*) < g(z%*1), r¥ <r¥; then we have

ola) <gla™) + 3 0ri - Affwi (63 =37

icly i=1
N Lg - 2
<ot@)+ [minr 3 S ) A S () )
1€12\j 1€l i=1
N _AtLy - N
<g(x )—l—(mlnr —Tj Z )
2(1-v) =
where j = argmin;er, 7. Hence,
AtL, &
(3.27) r* = r;-‘ = miinr;k >g(x*) — (g(a:N) — rjv) — 2(17_2}) Z (TZN)2.

Next, we bound the distance between 1" and g(x"). First, for any n and 1 <i <m,
we have

ri =mir + (1=n:)-g(2"),
i =g (@) =i —mi

Q
—
8

3
~—
=
=
—
3
I
Q
—~
~—
~—

r
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Noticing that the third equation of (3.25) works Vn, we have

629 o) Sa@) - L g S (0 (),

1EM\j 2(1 - /(/)) i=1
N . AtL, _
=g (o @) =) 30 A e S SN - ()
1€EM\j i=1
<.
N m
- AtL
<ol (@) =)+ 3ol | T g S - ()
k=1 1EM\j i=1
N m
AtL
S| 2 ARG ) b g () - ()
k=1 iE€M\j i=1
al k k k—1y\2 Ly “ k—1)2 k\2
=AY [ YD #H(@ig(a" ) +2(1_¢)Z<r1 )" = (rf)
k=1 1€EM\j i=1
=:AtCly.

We can obtain ¢ (:BN) — rj—v >0 from (3.22) and thus C > 0. Hence,
" - " Ly - N\2
(3.29) r*=minr; > g(x*) — At CN—i—iZ(ri )7
z 21— ) &
Let Cy = 1g(x*)/(Cn + 2(1 255 2oieq (rY)?). Then, VAt < Oy, we have

29
g(x*) > g > 0.

s
N

(3.30) r* =minr] >

Finally, letting n — oo in (2.14), we derive 0, f(x*) =0 for ¢ =1,...,m, which implies
Vf(x*) =0. The proof is complete. 0

3.3. Dissipation of the original energy. We showed in section 2 the modified
energy of the RVAV approach remains dissipative. Next, we show that when £ =0,
the original energy of RVAV is also dissipative when the step size At is sufficiently
small.

THEOREM 3.4. Assuming that f is L-smooth and has a positive lower bound §,
then the solution "+ of the RVAV scheme with £ =0 satisfies the discrete dissipation

law f(x™1) < f(x™) with At <min(Cy, Lf o Ti@oy) and limy o0 f(2") = f*.
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n+1
Proof. Denoting &' = \/f(mn = \/ftx")( +At%) Lyn and €"
(&r,&n,...,&m), we have

(3.31) Fl@"™) = f(a" — Ate" © Vf(z"))
=f(a") — At(£" o V(") Vf(z")
(Ate" o Vf(x")" V2f(2) (At OV f(z™)).

l\J\»—t

Noticing that &7,V f(2")|* < (" OV f(2") "V (@), l|V (") |* where €, =
min(¢") and €7, = max(€"), we have

(3.32) f@™) < f(@") — Aten, IV (@) + 5 (Atfmam) IV f ("))
If At < L( 7;'“”)2, then f(z"*1) < f(x™). Furthermore, utilizing the positive lower
bound 7* in Theorem 3.3 and r{ =/ f(x) Vi, we can have
261?1111 _ 2(r?+1)min f(ﬂ')”) > 75 (r?+1)mi" 275 (r?+1)min 5%
L(Ehaa)® L2000 TL (2 T L e T LI(&0)
3
Therefore, if At <min(Cy, %), we can ensure f(z"T!) < f(z"). ad

3.4. Convergence analysis of the RVAV. We first recall the following lemma.

LEMMA 3.5 (cf. [3]). f satisfies the Polyak—Lojasiewicz inequality if there exists
a p>0 such that

(33 n(f(@)~ 1) < IV @),

where f* = f(x*) and x* is the optimal point.

THEOREM 3.6. Let a sequence {x™} be generated by the RVAV with L=0. Sup-
pose f satisfying the Polyak—Lojasiewicz mequalzty and being bounded from below by
positive constant J; then for any v < W’ there exists Aty, Ato >0 such that if

Aty < At <min(Co, Lf(mo ,Ata), we have
(3.34) fE™h) — 1< (1= 2pe,) (f(&") — %),

where v >0 is the constant in (3.33) and v <€, < 57.

Proof. Subtracting f* from both sides of inequality (3.32) in Theorem 3.4 and
using Lemma 3.5, we have

F@) = F < fa) - £ — (At i~ S (AE) ) 1V 4@
f( ) f - 2/1“ (Atgmzn - (Atgma:r) ) (f(wn) - f*)
o) (F@") — £,

=:(1
where €, = At — Z(An
1).

2 . . . .
maw) - To achieve the linear convergence rate, it is
necessary that €, € (0,
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An upper bound on €, can be obtained dir%ctly, as it is a quadratic function of
At that achieves its maximum value at At = %

n n 2 n
e < min n__ £ ( min ) ( n )2 _ ( min)2 < i
N L(g'ﬁzaxy e 2 L(&ﬁ@aw)Q e 2L(§?naz)2 2L

To obtain a lower bound, we can rewrite €,, as follows:

2
ntly n+1
BN PV Y G )
fler) 2 f(z™)
3
From Theorem 3.4, we can obtain €, > 0 if At <min(Cy, %) Clearly, if we need

€n > >0, we need a tighter bound on At. Since f(z"™1) < f(z") and r9 = /f(x?)
Vi, we obtain

(T‘O)m”>2mt2 Vo LI@) N

r* L H
R R G o

Ve
V£ (=0)

Denoting w = , we can rewrite h as

L ., w
h(At) = “52 At* + §At.
To obtain h(At) >~ >0, we need

3 _ 6 _ 2 3 6 _ 2
w?® — /wb — 8yLw <At<w + /w® —8vLw

2L - 2L ’

2

2 > 0 which requires v < ‘é’—z = 8L(f§(7))2' Hence, setting At; =

and wb — 8yLw
3_ . /wb— 2 3 6 _ 2
% and Aty = %, we can easily show that if At; < At
3

min(Cy, %, Aty), then v <e¢, < o

<
5[ |

Remark 3.7. An analogous result can be attained for the RSAV scheme (see also
[15]).

4. Enhanced convergence rates. We showed in the last section that the RVAV
algorithm exhibits a linear convergence rate. It is known that the selection of step
size is a crucial factor in GD algorithms, as demonstrated by the superlinear conver-

Tn—Tp_1

gence rate of the secant method with step size At = T =F (@) and the quadratic
convergence rate of the Newton method with step size m for univariate optimiza-
tion problems. In this section, we demonstrate that by selecting an appropriate step
size, the linear convergence rate of VAV and RVAV can be enhanced to achieve a
superlinear convergence rate in the univariate case and present an adaptive version
of RVAV which accelerates the convergence rate of RVAV in the multivariate case.
In the univariate case, the terms VAV and RVAV are equivalent to SAV and RSAV,
respectively. To maintain consistency and clarity in the transition to the multivariate
case, we shall continue to refer to them as VAV and RVAV in the following proof,
despite their equivalence to SAV and RSAV.
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4.1. Superlinear convergence rate of univariate VAV and RVAV. For
the sake of simplifying the presentation, we consider the VAV scheme with £ =0 in
the univariate case (note that similar results can be achieved for the RVAV scheme
by substituting r**! with 721):

l‘"+1 — " ,rn—&-l
41 — _ / x"L ,
-y A !
,r,n+l —rn 1 xn-i—l — "
4.2 _ T
(4.2) At 2 f(zn)f (@)
We can derive from the above that r"*! = 1+At}l(mn>2 = Qf(mn)z-{-(g;}/(va)z .

2f ("
Then, VAV can be rewritten as the following iterative metfﬁod:

n _.n 2 V f(mn)rn 1/ n
(4.3) " =x _Ath(xn)+Atf/(xn)2f (")

with the learning rate 7, = Atw(jn— %
Assuming that a* is the optimai point and denoting ¢, = 2™ —a*, we subtract z*

from both sides of (4.3) to derive

2/ flam)r™
Moty + ! )
_en (2/@") + AL @")?) - 288/ flam)rt [ (a")

(4.4) Entl =En —

2f (xm) + At f/(axm)?
Applying the Taylor expansion to f’ around z™, we derive
" *
(@5) 0=F") = F@") - e+ Limde,

where £ lies between z™ and x*. Substituting this expression into the numerator of
the second equation in (4.4) yields

L _en (2f (™) + Atf'(z™)?) — 28t/ f(z™)rm f/ (z™)
n+1l — 2f(1'n) + Atf’(l’”)Q
e (210 + de( 1w, - L5022
2f(z™) + At f'(zm)?

2At\/mr" (f”(ac”)sn — 7fﬁ/§;)si)

- 2f(zm) + Atf'(xn)?
e <2f(m”) — 2At, /f(x”)r”f”(x"))
2f(z™) + At f!(zn)?

AtEi ((f”(l‘n) _ f/”éf;)fn)z =+ QW,,JL f”’éf;))

" 2/ (am) + Atf/(am)? '

A straightforward approach to obtaining a quadratically convergent algorithm is to

set At = Y fam) 1

- ——. However, since computing second-order derivatives can be
T f7(xm) )
costly or may not be possible, we can instead set

(4.6)
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) an—ant
P - P
Then by taking Taylor expansion of f/(z"~!) about a2,

ARI(39)
2

(4.7) At =

(4.8) Fr @) =f (@) + 7 (2™) (1 —en) + (En—1—n)?,

where ¢! lies between 2"~ and 2™, we can rewrite At as follows:

@) ! :
I () + SO ED) (1 — en)

By substituting the expression for At from (4.9) into the first term of the numerator
in the last equation of (4.6), we obtain

(4.9) At =

) fl/(xn)
2f (") = 28t/ fzm)r” f7(a™) = 2f (™) [ 1 -
(&™) =286/ f(am)rt £ (@) = 2 ( )< f"<xn)+§f<3><£i><sn1—%))

:f(xn) < f(3)(€l£) (En,1 — En) ) '
F7 @) + 3 F ) (n1—en)

Then the last equation of (4.6) can be expressed as

n FP (€D (En—1—en)
Enf(x ) (f//(xn)_i_%;(g)(ii)(‘?nfl_En))

S 2f (z7) + At (a7)?

17’ * 2 117 *
Até’% <(f”(l‘n) f 55")577,) +2\/W7,nf éfn)>

2f (xm) + At f/(xm)?

_|_

We can then derive that

and then

(4.10) lim lent1l _( F®) (2% )

n—s 00 ‘€n5n71‘ o 2f (m*) f(2) (x*)

To determine the order of convergence, we assume an asymptotic relationship |e,, 41| &
Alen|?, where A is a constant, and p is the order of convergence. Then we have

2

lenl = Alen—1lPy  len1|m A7VP g, VP,

Plugging the assumption and the above into (4.10), we will have

2

el _ g, Al (10 )

(4.11) lim 2f (z*) f@ (z*)

n—o00 ‘Enan—l| _n—><>o A—l/p|€n|1+1/17 =
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This implies p = 1 + 1/p, from which we deduce that the convergence rate of the
modified algorithm with At given by (4.7) is HT‘/E

4.2. ARVAYV with Steffensen step size. To fully take advantage of the un-
conditional energy dissipation of RVAV, we propose below an adaptive version of the
algorithm, ARVAV. By carefully selecting the step size, we can accelerate the algo-
rithm’s performance. We introduce an indicator oo = mean(\/’"%), which demonstrates
the ratio of the modified and the original energy. When the ratio is close to 1, we
continue to use the current step size; when it deviates significantly from 1, it suggests
that the step size needs to be reduced.

For further enhancement in efficacy, we should also consider using a suitable accel-
erated method. However, the accelerated method discussed above is only applicable in
the univariate case, as extending (4.7) to the multivariate case is not straightforward.
Nevertheless, this method provides us with insight that RVAV can be accelerated
by choosing an appropriate step size. On the other hand, Steffensen’s acceleration
method [24, 25] is applicable to multivariate cases, so we will adopt the Steffensen
step size [31] and introduce our adaptive step size:

Vf(@n+Vf(zn)—Vf(zn)] Vf(xn)
where ¢, = fT(nwn) (Vf(mn)7g"}zm_ff;);|f(mn7mn,1). We observe that (4.12) captures a

significant amount of gradient information and is similar to (4.7) but applicable to
multivariate cases.

Building on the aforementioned premise, we put forth the ARVAV algorithm,
Algorithm 4.2: By incorporating Steffensen’s step size in the ARVAV algorithm, we
can improve its performance. However, we should also consider the computational
cost of the Steffensen method and balance it against the potential performance gains.
In practice, the decision of whether to use the Steffensen method may depend on the
specific problem and available computational resources.

Algorithm 4.1. RVAV with enhanced convergence in univariate case.

Given a starting point 2° € domf, a step size At, 7 =/f(2°) and set n =0,
e (0,1).

Compute z' and r' with Algorithm 2.1 and update n = 1.

while the termination condition is not met do

_ A/ f@E) gt —g" !
Set At— rn f/(l‘")—f’(l‘"_l)
2f(z")

Sl _
Compute 771 = WT"
Updat ntl — pon . Ap_T I pn
pdate z T \/W'")f (z™)
Set 1"t =i T+ (1 —n)y/f(z"H)
Compute 7o = min, c[o 17, such that (r"T1)2 — (7 +1)2 < L (zn+l — zn)
Update r" ! =nor™t 4 (1 — o)/ f(z"+1)
Update n=n+1
end while
return z"*!

2
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Algorithm 4.2. ARVAV.

Given a starting point ° € domf, a step size Atg, =/ f(x°), the indicator
threshold §=0.1 and set n=0, ¢ € (0,1).
while the termination condition is not met do

Compute the indicator o = mean( fﬁ)
if |1 —a|> g then

At — V(@) [ IV f ()
n o (V@) -V f(@r )T (@ —z"=1) [Vf(@n+Vf(zn)) =V (@n)] TV (zn)
end if

_ af(z") \2\— ,
Compute 7" = (1 + 2(1+At%f\?)f(m")( fa(:i N2)=1pn for i=1,....m

~n+1 n
Update x?“ =z — At (1 + Atn)\?)’1% 6'7;(:_ ) for i = 1,...,m

Set Tt = n 4 (1 —n;)/f(xntT) fori=1,...,m
Compute 7;0 = min,, (o1 7, such that (r]'t1)2 — (711)2 < Adt’n (a7t —ap)?
fori=1,...,m
Update 7 = ;o™ + (1 — mi0)y/f (@) fori=1,...,m
Update n=n+1
end while
return z" !

5. Experimental results.
5.1. Convex functions. Consider the following minimization problem:

N/2 N/2

. 1
(5.1) min f(x) = legi_l + N Z;x;,
where © = (x1,x2,...,2x). Consider the case where N = 100. In this scenario,

F@) =0 231+ 155 Sopey @25 The function f(x) is obviously convex. However,
the condition number of its Hessian matrix H is N. For large N, the Hessian matrix
will have a poor condition number, which makes it difficult for the GD method to
converge. This is because GD methods are sensitive to the step size, and a poorly
conditioned Hessian matrix can cause the method to oscillate or converge slowly.

We consider two variants of our proposed method: RVAV and RVAVL. RVAV
corresponds to £ =0, while RVAVL corresponds to £ = diagonal of H. A constant C
of 0.1 is added to f(x) to prevent the function value from being negative or zero, as
required in the SAV and VAV methods. To evaluate their performance under various
step sizes, we compare them with three existing optimization methods, GD, RSAV,
and VAV using the initial condition g = (1,1,...,1). Table 1 presents the loss values
obtained by each method after 1000 iterations.

Among the methods considered, VAV demonstrates superior performance with
small step sizes (At =0.1 and At =1). However, as the step size increases to At =10
and At =20, RVAV and RVAVL outperform other methods. This indicates that the
relaxed strategy, employed in RVAV and RVAVL, plays a crucial role in achieving
faster and more accurate convergence when the step size is moderate.

We also examine the performance of each method at its respective best step size.
The loss curves are presented in Figure 1. At each best step size, RVAV and RVAVL
consistently outperform the other methods in terms of minimizing loss. Additionally,
RVAVL can accelerate convergence by utilizing information from the Hessian matrix.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/16/25 to 198.2.210.234 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

C144 S. ZHANG, J. ZHANG, J. SHEN, AND G. LIN

TABLE 1
The loss of the convex function f(x). The table presents the loss of f(x) after 1000 iterations,
which is computed by |f(x)— f(x*)|. The global minimum x* is 0, and f(x*) =0. “NAN” represents
the method blowing up after some iterations.

Loss GD RSAV VAV RVAV RVAVL
At=0.1 0.0091 0.0092 0.0053 0.0091 0.0092
At=1 50.0 4.33x10718 978x10722 561x10"1% 3.15x 10718
At =10 NAN 0.9059 0.0069 8.94 x 10~110 218 x 10—159
At =20 NAN 1.6401 1.65 x 104 0 0
At =30 NAN 0.4078 4.05 x 104 0 0

. T“Y“"P“"‘vv-.,‘

10-23

1044

10-65

o
S 10-86

el GD-0.1

RSAV-1
P — = VAVAl
U A RVAV-20
—— RVAVL-20
6 200 460 600 860 1’000

Iteration

F1G. 1. The loss of the convex function f(x) while changing the number of iterations at differ-
ent step sizes. It shows the comparison of loss curves for different optimization methods at their
respective best step sizes, for example, the best step size for GD is At =0.1. It also illustrates the
loss curves for GD, RSAV, VAV, RVAV, and RVAVL on the quadratic function. RVAV and RVAVL
consistently outperform the other methods, achieving lower loss values at each best step size.

5.2. Nonconvex functions. We demonstrated the superiority of RVAV and
RVAVL over GD, RSAV, and VAV for convex functions. To further test the per-
formance of RVAV and RVAVL, we consider a nonconvex Rosenbrock function and
compare them with GD, RSAV, and VAV. The objective function is given by

(5.2) f(@1,09) = (1= 21) 4100 (23 — 22)

with the global minimum at * = (1,1) and the minimal value of 0. The initial point
for the numerical experiment was set to (—2, —4). In this example, we consider RVAVL
where L is set as a diagonal matrix AI, with A = 100. We conduct a performance
comparison using a small step size of At =0.0015 and a larger step size of At =0.01.
Figures 2 and 3 illustrate the error curves over 20000 iterations. With both step
sizes, RVAV and RVAVL outperform the other methods. With a small step size,
RVAVL shows little difference from RVAV. However, with a larger step size, only
RVAVL attains the optimal point. Choosing an appropriate £ as a diagonal matrix,
A, indeed helps RVAV approach the optimal point with a larger step size.
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102 > > »- > » »- > »- > > » > »- »- » »- > »- » »

10°

Loss

—— GD-0.0015
VAV-0.0015
—— RSAV-0.0015
w0 —<— RVAV-0.0015
—e— RVAVL-0.0015

10712 T T T T T T ¢ r T
0 2500 5000 7500 10000 12500 15000 17500 20000

Iteration

F1G. 2. Nonconvez function: The figure shows the loss, |f(x) — f(x*)|, of GD, VAV, RSAV,
RVAV, and RVAVL while changing the number of iterations under the step size 0.0015.

102

107*

Loss

—— GD-0.01
VAV-0.01

—— RSAV-0.01 T T t—e—e—o—
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F1G. 3. Nonconvez function: The figure shows the loss, |f(x) — f(z*)|, of GD, VAV, RSAV,
RVAV, and RVAVL while changing the number of iterations under the step size At =0.01.

Furthermore, we plot the trajectories of GD, VAV, RVAV, and RVAVL using
At =0.01 in Figure 4, with markers placed every 500 steps. The trajectories reveal
that GD’s iteration deviates in the wrong direction, while VAV and RVAV exhibit
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(c) Trajectory of RVAV. (d) Trajectory of RVAVL.

F1G. 4. Trajectories of iterative points of the nonconvex function: The trajectories of iterative
points of a nonconvex function are shown, with the optimal point being (1,1). The red line depicts
the trajectory of GD, VAV, RVAV, and RVAVL, while the black arrow indicates the direction of
iterative points. (Color figures are online.)

oscillations during iterations and get stuck near the optimal points. In contrast,
RVAVL accurately approaches the optimal point rapidly.

5.3. Burgers’ equations. Next, we explore using physics-informed neural net-
works (PINN) [17] to solve Burgers’ equation with ARVAV. Applying ARVAV to
PINN can lead to highly accurate solutions of Burgers’ equation. We consider the
Burgers’ equation

(5.3)

Our implementation of PINN consists of a simple dense network with 8 hidden layers,
20 neurons in each layer, and a total of 3441 trainable parameters. The activation
function used is tanh.

To demonstrate the effectiveness of ARVAV, we compare its performance to that
of GD, SAV, RSAV, and the adaptive version of RSAV using the default step size
At = 0.01. With ARVAV, we can use a larger step size, and in this case, we use
At =0.05. Our goal is to show that ARVAV works better even with a larger step size.

In Figure 5, we compare the training loss during the iteration. We observe that
ARVAV is much more stable compared to GD, SAV, RSAV, and RSAV-Adaptive as
GD displays large oscillations and others appear to be stuck at a certain point. Ad-
ditionally, the final training loss of ARVAV is substantially smaller than that of other
methods. Figure 6 shows the comparison between the reference solution obtained by
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10

The training loss of the Burger's equation

—— GD
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Fic. 5. Training loss of the Burgers’ equation, which indicates the training loss of ARVAV is
more stable compared to the one of GD, which has large oscillations. Moreover, the final training
loss of ARVAYV is significantly smaller than that of other methods.
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FI1G. 6. The predicted solutions of Burgers’ equations : Figure (a) shows the reference solution
obtained by the pseudospectral method. The z-axis represents the time variablet, the y-axis represents
the space variable x, whereas the color intensity corresponds to the value of u(zx,t).
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The solution of Burger's equation when t = 0.4
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FiG. 7. The predicted solutions of Burgers’ equations: Comparison of GD, SAV, RSAV, RSAV-
Adaptive, and ARVAV with the reference solution at t =0.4. ARVAV predicts more accurately even
at the sharp location.

the spectral method and the solution obtained by GD, SAV, RSAV, RSAV-Adaptive,
and ARVAV. To provide a clear comparison, we focus on the curve when ¢ = 0.4 and
compare the reference solution with GD in Figure 7. As Burgers’ equation is challeng-
ing due to its nonlinearity, GD, SAV, RSAV, and RSAV-Adaptive struggle to produce
accurate solutions. However, the ARVAV algorithm significantly outperforms others,
demonstrating its effectiveness in solving challenging nonlinear problems like Burgers’
equations.

5.4. Superlinear convergence in univariate case. Finally, we can focus on
demonstrating the superlinear convergence in the context of univariate optimization
of Algorithm 4.1, employing two distinct yet simple function forms for illustration pur-
poses. We remain cognizant that exploration of the multivariate scenario constitutes
a rich area for further investigation.

The two functions selected for this study are f(z) = %:c‘g —100zx+ 1000, defined on
the interval [0,20], and g(z) = (sin(z) — $)® + 5, defined on the interval [—1,2]. The
function f(x) exhibits a minimum at = 10, whereas the function g(z) is minimized
at r=%.

Our previously derived results inform us that the convergence rate, here denoted

by ¢, is given by the 1+T\/g This relationship can be expressed in the context of error

In(ent1/€n)
ln(fn}gnfl). TO

to represent the rate of convergence

at each iteration as €,41 = Cel. It is equivalent to stating that g =

simplify notation, we introduce ¢, = %

at each step.

To elucidate these concepts, we tabulate the aforementioned variables in Table 2.
As the optimization process gravitates toward the minimizer, the empirical conver-
gence rate approximates 1.6, corroborating the theoretical superlinear convergence
predicted in our analysis.
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TABLE 2
This table enumerates the values of € and the derived convergence rate, q, at each iteration, n,
for the optimization of functions f(x) and g(xz). The functions under study are f(x) = %xg — 100z +
1000 and g(z) = (sin(z) — %)2 + 5. The calculated rates of convergence, denoted by qn, provide an
empirical validation of the superlinear convergence observed in these scenarios.

f(x) En an g(x) En qn
= 0.4931 — = 0.1096 —
= 0.1604 2.4921 = 0.0201 1.4949
= 0.0098 1.7382 = 0.0016 1.6101

270 x 10~°  1.6140
3.72x 1078  1.6192
8.68 x 1013

7.54x107%  1.5673
3.69x 1078  1.6385
1.39 x 10—13

333333
Il

O UL W N

333333
Il

DO W N

6. Conclusions. We proposed a new optimization algorithm, vector auxiliary
variable with relaxation (RVAV), that satisfies an unconditional energy dissipation
law and possesses excellent convergence properties. We provided rigorous proofs for
its linear convergence rate in the convex setting and proposed an improved algorithm
which is shown to have a superlinear convergence rate in the univariate case. We also
proposed an adaptive version of the RVAV (ARVAV) which combines the advantages
of RVAV with adaptive step size based on Steffensen’s method. The unconditional
energy dissipation property of our algorithm is particularly useful in ensuring the
stability of the optimization process. Our numerical results for convex/nonconvex
optimizations and for using PINN to solve Burgers’ equation demonstrate that the
ARVAV algorithm outperforms some existing optimization methods, providing a new
and powerful tool for solving optimization problems. It is hoped that our contributions
will serve as a catalyst for continued exploration in this field and make a significant
impact on the development of optimization algorithms for solving complex problems
in machine learning, material science, and fluid dynamics.
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