
Communications on Applied Mathematics and Computation
https://doi.org/10.1007/s42967-025-00486-2

ORIG INAL PAPER

Structure Preserving Schemes for a Class of Wasserstein
Gradient Flows

Shiheng Zhang1 · Jie Shen2

Received: 27 March 2024 / Revised: 28 August 2024 / Accepted: 14 October 2024
© Shanghai University 2025

Abstract
We introduce in this paper two time discretization schemes tailored for a range ofWasserstein
gradient flows. These schemes are designed to preservemass and positivity and to be uniquely
solvable. In addition, they also ensure energy dissipation in many typical scenarios. Through
extensive numerical experiments, we demonstrate the schemes’ robustness, accuracy, and
efficiency.
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media equation (PME)
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1 Introduction

Gradient flows play important roles in mathematical models across various scientific and
engineering disciplines, especially in materials science and fluid dynamics [1, 2, 8, 12, 15,
21, 30, 46]. A general form of gradient flows can be written as

∂ρ

∂t
= −G δE

δρ
, (1)

where E is a specific energy functional, and G is a positive, possibly nonlinear, operator.
Typical forms of G include G = I [1] or G = −∇ · M∇ where M is a positive mobility
function [8]. There are also instances where more intricate metrics are desired. A notable
example is the gradient flows over spaces characterized by the Wasserstein metric, leading
to the concept of Wasserstein gradient flows, where G embodies a nonlinear operator such
that
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∂ρ

∂t
= ∇ ·

(
ρ∇ δE

δρ

)
. (2)

This framework encapsulates a broad class of nonlinear parabolic equations, including the
porous medium equation (PME) [42, 43], the Keller-Segel equation [27, 28, 32], the Fokker-
Planck equation [6, 41], and the Poisson-Nernst-Planck (PNP) equation [4, 5], which can
all be classified as Wasserstein gradient flows. The surge in interest for Wasserstein gradient
flows in recent years is apparent in fields ranging from optimal transport to fluid dynamics
and statistical mechanics [11, 33, 44]. Essential properties of the Wasserstein gradient flows
include mass conservation, positivity preserving, and energy dissipation.

Designing numerical schemes that can efficiently and accurately capture the essential prop-
erties of the Wasserstein gradient flows is still a challenge. Since the Wasserstein gradient
flows are a special class of gradient flows, we can consider established techniques for gradient
flows. However, energy stable schemes for gradient flows, such as convex splitting [16, 17,
35], IEQ [45, 47], and the scalar auxiliary variable (SAV) [36, 39, 40]), do not inherently
guarantee positivity preservation. The celebrated JKO scheme [26] is a widely used approach
to solve variational problems associated withWasserstein gradient flows. This method’s vari-
ational structure ensures unconditional energy stability and positivity preserving. However,
it requires solving a nonlinear minimization problem in the Wasserstein metric. Significant
efforts have been made towards efficient computation of the JKO scheme, such as [9, 10,
18, 19, 24, 25, 29, 34]. Despite extensive research on the JKO scheme, efficiently solving it
remains challenging due to the inherent complexity of the Wasserstein metric. Some other
approaches have been developed recently that can preserve positivity and energy dissipation
forWasserstein gradient flows, but they either are not uniquely solvable [3, 23], or are limited
to certain Wasserstein gradient flows [37, 38]. We also refer to more recent work [13, 14] for
other efforts in developing structure preserving schemes for Wasserstein gradient flows.

We propose in this paper two approaches to construct time discretization schemes for
Wasserstein gradient flows.

(i) In the first approach, we set E(ρ) = ∫
�
(H(ρ) + ρv) dx, where H ′′(ρ) > 0 when ρ > 0

is assumed, and v is a given potential function. We construct first-order and second-order
schemes that can preserve mass and positivity and are uniquely solvable. Furthermore,
the first-order scheme is also energy dissipative in some typical scenarios.

(ii) In the second approach, E(ρ) can take amore general form, but can be split into two parts:
one part is convex, and the other is bounded from below. This assumption is significantly
less restrictive than the assumption required by the convex splitting method since only
one part is required to be convex. We construct first-order and second-order schemes by
introducing an SAV [40], and show that they preserve mass and positivity, are uniquely
solvable, and energy dissipative with respect to a modified energy.

These schemes are nonlinear in nature, but their solutions can all be interpreted as minimizers
of strictly convex functionals.

The paper is structured as follows: we introduce in Sect. 2 the two approaches in the
semi-discrete form, and establish their essential properties. We present in Sect. 3 a spatial
discretization which can inherent essential properties in the space continuous case using the
finite-difference method as an example. We carry out a series of numerical experiments in
Sect. 4 to validate our schemes’ accuracy and efficiency. Finally, we provide some concluding
remarks in Sect. 5.
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2 Time Discretization

In this section,we present two distinct time discretization approaches, each tailored to specific
scenarios of the Wasserstein gradient flows (2) with a smooth functional E : � × R → R.
We shall assume throughout this paper that the boundary condition for ρ is either periodic
or homogeneous Neumann, i.e., ∂ρ

∂n = 0, and use (a, b) to denote the integral
∫
�
ab dx.

2.1 The First Approach (S1)

The Wasserstein gradient flow is as follows:

∂ρ

∂t
= ∇ ·

(
ρ∇ δE

δρ

)
, x ∈ � ⊂ R

d , t > 0. (3)

Under the assumption that E(ρ) = ∫
�
(H(ρ) + ρv) dx with H ′′(ρ) > 0 when ρ > 0, and

using the identity ∇ρ = ρ∇ log ρ, (3) can be reformulated as

∂ρ

∂t
= ∇ · (

ρ
(
H ′′(ρ)ρ∇ log ρ + ∇v

))
. (4)

The assumption H ′′(ρ) > 0 when ρ > 0 is satisfied in various contexts, including the PME
and the Fokker-Planck equation.

A first-order time-discretized scheme can be written as follows:

ρn+1 − ρn

δt
= ∇ · (

ρn (
H ′′ (ρn) ρn∇ log ρn+1 + ∇v

))
. (S1)

This scheme is a generalization of the schemes introduced in Refs. [20, 38]. It is a nonlinear
scheme, but can guarantee mass conservation law, positivity, also the energy dissipation law
if H ′′(ρ)ρ = 1 or ∇v = 0, as stated below.

Theorem 1 Assuming H ′′(ρ) > 0 when ρ > 0 and ρn > 0, the scheme (S1) exhibits the
following attributes.

(i) Mass conservation:
∫
�

ρn dx = ∫
�

ρn+1 dx.
(ii) Positivity preserving: ρn+1 > 0.
(iii) Unique solvability.
(iv) Energy dissipation law: if H(ρ) = ρ(log ρ − 1) + cρ, we have∫

�

ρn+1(log ρn+1 − 1 + v) dx −
∫

�

ρn(log ρn − 1 + v) dx

� −δt
∫

�

ρn
∣∣∇(log ρn+1 + v)

∣∣2 dx;
(5)

or if ∇v = 0, we have∫
�

ρn+1(log ρn+1 − 1) dx −
∫

�

ρn(log ρn − 1) dx

� −δt
∫

�

(
ρn)2 H ′′(ρn)

∣∣∇ log ρn+1
∣∣2 dx.

(6)

Proof The mass conservation is obtained by integrating (S1) over the domain� and utilizing
the Neumann boundary conditions or periodic boundary conditions imposed to ρn+1.
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The preservation of positivity for ρn+1 is ensured through the inclusion of log ρn+1 in our
formulation.

For the unique solvability, we define Ln as a linear operator by Lng = u where u is the
solution of the following elliptic equation:

−∇ ·
((

ρn)2 H ′′(ρn)∇u
)

= g,
∫

�

u dx = 0

with Neumann boundary conditions or periodic boundary conditions. Hence, Ln is self-
adjoint and semi-positive definite. We then consider a functional

F[ρn+1] :=
∫

�

ρn+1(log ρn+1 − 1) dx + 1

2δt

∫
�

(
ρn+1 − ρn)Ln

(
ρn+1 − ρn) dx

+
∫

�

ρn+1Ln∇ · (
ρn∇v

)
dx.

Notably, F stands as a strictly convex functional within the set

A := {
ρn+1 ∈ H2(�) : ρn+1 > 0 in �

}
.

Remarkably, the Euler-Lagrange equation of F under the constraint of mass conservation is⎧⎪⎪⎨
⎪⎪⎩

log ρn+1 + 1

δt
Ln

(
ρn+1 − ρn) + Ln∇ · (

ρn∇v
) = λ,∫

�

(ρn+1 − ρn) dx = 0,
(7)

where λ is the Lagrange multiplier of the mass conservation. It is equivalent to the equation
given in the scheme (S1) with the definition of Ln . Consequently, the unique minimizer of
F serves as the unique solution to the scheme (S1).

If H(ρ) = ρ(log ρ − 1) + cρ, we have H ′′(ρ)ρ = 1. Taking the inner product of (S1)
with log ρn+1 + v and employing integration by parts, we obtain∫

�

(
ρn+1 − ρn) (

log ρn+1 + v
)
dx = −δt

∫
�

ρn
∣∣∇(log ρn+1 + v)

∣∣2 dx.

To facilitate further simplification, we utilize the following inequality which can be derived
by the Taylor expansion:

(a − b) log a = (a log a − a) − (b log b − b) + (a − b)2

2ξ
, ξ ∈ [min{a, b},max{a, b}].

(8)

Subsequently, we can infer

(ρn+1 log ρn+1 − ρn+1) − (ρn log ρn − ρn) �
(
ρn+1 − ρn) log ρn+1.

Employing this inequality directly leads us to∫
�

(
ρn+1 (

log ρn+1 + v − 1
) − ρn (

log ρn + v − 1
))

dx

�
∫

�

(
ρn+1 − ρn) (

log ρn+1 + v
)
dx

= −δt
∫

�

ρn
∣∣∇(log ρn+1 + v)

∣∣2 dx

� 0,

(9)
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which is the desired energy dissipation law (5).
Similarly, if ∇v = 0, the energy dissipation law (6) can be obtained by taking the inner

product of (S1) with log ρn+1 and integrating by parts.

We can construct a second-order scheme by combining the second-order BDF with the
Adams-Bashforth extrapolation as follows:

3ρn+1 − 4ρn + ρn−1

2δt
= ∇ · (φ∗,n+ 1

2 ∇ log ρn+1) + ∇ · (ρ∗,n+ 1
2 ∇v), (10)

where φ = ρ2H ′′(ρ), and for any function ψ ,

ψ∗,n+ 1
2 =

{
2ψn − ψn−1 if ψn � ψn−1,

1
2/ψn−1/ψn−1 if ψn < ψn−1,

(11)

which is a modified Adams-Bashforth extrapolation to preserve the positivity, i.e.,ψ∗,n+ 1
2 >

0 if ψn, ψn−1 > 0. To find ρ1, we can use the first-order method (S1).

Theorem 2 Assume that ρ1 is obtained from the first-order scheme. The second-order scheme
(10) exhibits the following attributes.

(i) Mass conservation:
∫
�

ρn dx = ∫
�

ρn+1 dx.
(ii) Positivity preserving: ρn+1 > 0.
(iii) Unique solvability.

Proof The proof is similar to that of Theorem1.Weonly need tomodify slightly the definition
of the linear operator L̃n as follows: L̃ng = u is defined by the elliptic equation

−∇ ·
(
φ∗,n+ 1

2 ∇u
)

= g,
∫

�

u dx = 0

with the homogeneous Neumann boundary conditions or periodic boundary conditions. We
can also define a slightly different convex functional F̃ as follows:

F̃[ρn+1] :=
∫

�

ρn+1(log ρn+1 − 1) dx +
∫

�

ρn+1L̃n∇ · (
ρn∇v

)
dx

+ 1

12δt

∫
�

(
3ρn+1 − 4ρn + ρn−1) L̃n

(
3ρn+1 − 4ρn + ρn−1) dx.

Then, it can be shown that the solution of (10) is the unique minimizer of the above convex
functional.

Unfortunately, we are unable to show that the above second-order scheme is energy dis-
sipative as in the first-order scheme.

2.2 The Second Approach (S2)

While the scheme (S1) retainsmany desired properties, its applicability is restricted to limited
scenarios. To address the limitation, we propose the scheme (S2). This scheme maintains all
the desirable properties and accommodates more general scenarios by splitting the energy
and introducing an SAV.

Again, we consider the general Wasserstein gradient flow

∂ρ

∂t
= ∇ ·

(
ρ∇ δE

δρ

)
(12)
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with a smooth functional E :� × R → R and periodic boundary conditions or Neumann
boundary conditions.

Consider the functional E , which can be decomposed into two parts: E = E1 + E2.
Specifically,

E1 = E −
∫

�

ρ(log ρ − 1) dx and E2 =
∫

�

ρ(log ρ − 1) dx.

To employ the SAV method, we assume that E1 is bounded below, and there exists a
positive constant C such that E1 + C > 0. Importantly, this assumption is mild in the
context of the typical Wasserstein gradient flow. As an illustrative example, we consider
E(ρ) = ∫

�
ρ2dx + 1, which can also be expressed as

E(ρ) =
∫

�

(ρ2 − ρ(log ρ − 1)) dx + 1 +
∫

�

ρ(log ρ − 1) dx.

With E1 = ∫
�
(ρ2−ρ(log ρ−1)) dx+1, it is evident from the conditionρ2−ρ(log ρ−1) > 0

for ρ > 0 that E1 > 1.
Building on this foundation, we can introduce a scalar variable r = √

E1 + C , then (12)
can be expressed as follows:

∂ρ

∂t
= ∇ ·

(
ρ∇

(
r√

E1 + C

δE1

δρ
+ δE2

δρ

))
. (13)

Noting that δE2
δρ

= log ρ, we can deal with r and δE2
δρ

implicitly, and obtain

ρn+1 − ρn

δt
= ∇ ·

(
ρn∇

(
rn+1√
En
1 + C

δEn
1

δρ
+ log ρn+1

))
, (S2-1)

rn+1 − rn

δt
= 1

2
√
En
1 + C

(
δEn

1

δρ
,
ρn+1 − ρn

δt

)
. (S2-2)

Theorem 3 The scheme (S2) exhibits the following attributes.

(i) Mass conservation:
∫
�

ρn dx = ∫
�

ρn+1 dx.
(ii) Positivity preserving: ρn+1 > 0 if ρn > 0.
(iii) Unique solvability.
(iv) Energy dissipation law:

Ẽn+1 − Ẽn � −δt
∫

�

ρn

∣∣∣∣∣∇
(

rn+1√
En
1 + C

δEn
1

δρ
+ log ρn+1

)∣∣∣∣∣
2

dx, (14)

where the discrete energy Ẽn = ∫
�

ρn (log ρn − 1) dx + (rn)2.

Proof Integrating (S2-1) over the domain � and applying Neumann or periodic boundary
conditions to both δE1

δρ
and log ρ enables us to establish the mass conservation law.

Furthermore, the inclusion of log ρn+1 in our formulation guarantees the preservation of
positivity for ρn+1.

Next, we show that (S2) is uniquely solvable. We first plug (S2-1) into (S2-2), and obtain

ρn+1 − ρn

δt
=

rn + 1
2
√

En
1+C

(
δEn

1
δρ

, ρn+1 − ρn
)

√
En
1 + C

∇ ·
(

ρn∇ δEn
1

δρ

)
+ ∇ · (

ρn∇ log ρn+1) .

(15)
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We then define Ln by Lng = u where u is the solution of the following elliptic equation:

−∇ · (
ρn∇u

) = g,
∫

�

u dx = 0

with Neumann boundary conditions or periodic boundary conditions. Hence, Ln is self-
adjoint and semi-positive definite. Similarly, we define a functional

F[ρn+1] := (
ρn+1(log ρn+1 − 1), 1

) + 1

2δt

(
ρn+1 − ρn,Ln

(
ρn+1 − ρn))

+
(

rn√
En
1 + C

δEn
1

δρ
, ρn+1

)
+ 1

4(En
1 + C)

(
δEn

1

δρ
, ρn+1 − ρn

)2

.

(16)

The Euler-Lagrange equation of the above functional under mass conservation is

⎧⎪⎪⎨
⎪⎪⎩

1

δt
Ln(ρ

n+1 − ρn) + rn√
En
1 + C

δEn
1

δρ
+ 1

2En
1

(
δEn

1

δρ
, ρn+1 − ρn

)
δEn

1

δρ
+ log ρn+1 = λ,

∫
�

(ρn+1 − ρn) dx = 0,

(17)

where λ is the Lagrange multiplier to enforce the mass conservation. It is easy to see from
the definition of Ln that the above is equivalent to (15).

On the other hand, F is clearly a strictly convex functional on

A = {
ρn+1 ∈ H2(�): ρn+1 > 0

}
.

Hence, F admits a unique minimizer, i.e., (17) is uniquely solvable, which implies that (S2)
is uniquely solvable. Furthermore, the minimizer ρn+1 is positive since the derivative of the
term ρn+1(log ρn+1 − 1) tends to −∞ at zero.

To show the energy dissipation, we take the inner product of (S2-1) with rn+1√
En
1+C

δEn
1

δρ
+

log ρn+1, we obtain
(

rn+1√
En
1 + C

δEn
1

δρ
+ log ρn+1,

ρn+1 − ρn

δt

)

= −
(

ρn∇
(

rn+1√
En
1 + C

δEn
1

δρ
+ log ρn+1

)
,∇

(
rn+1√
En
1 + C

δEn
1

δρ
+ log ρn+1

))
.

On theother hand, taking the inner product of (S2-2)with 2rn+1, andusing aTaylor expansion,
we can rewrite the first term in the above to(

rn+1√
En
1 + C

δEn
1

δρ
+ log ρn+1,

ρn+1 − ρn

δt

)

= 2(rn+1 − rn)rn+1

δt
+

(
log ρn+1,

ρn+1 − ρn

δt

)

= 1

δt

((
rn+1)2 − (

rn
)2 + (

rn+1 − rn
)2)

+ 1

δt

((
log ρn+1 − 1

)
ρn+1 − (

log ρn − 1
)
ρn +

(
ρn+1 − ρn

)2
2ξ

)
.

(18)
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Combining the above two identities, we have

Ẽn+1 − Ẽn

� −δt

(
ρn∇

(
rn+1√
En
1 + C

δEn
1

δρ
+ log ρn+1

)
,∇

(
rn+1√
En
1 + C

δEn
1

δρ
+ log ρn+1

))

� 0,

where Ẽn = ∫
�

ρn (log ρn − 1) dx + (rn)2.

We can also construct a second-order scheme with the BDF and the Adams-Bashforth
extrapolation as follows:

3ρn+1 − 4ρn + ρn−1

2δt
= ∇ ·

⎛
⎝ρ∗,n+ 1

2 ∇
⎛
⎝ rn+1√

E
∗,n+ 1

2
1 + C

δE
∗,n+ 1

2
1

δρ
+ log ρn+1

⎞
⎠

⎞
⎠ , (19)

3rn+1 − 4rn + rn−1

2δt
= 1

2

√
E

∗,n+ 1
2

1 + C

⎛
⎝δE

∗,n+ 1
2

1

δρ
,
3ρn+1 − 4ρn + ρn−1

2δt

⎞
⎠ , (20)

where E
∗,n+ 1

2
1 = E1(ρ

∗,n+ 1
2 ),

δE
∗,n+ 1

2
1
δρ

= δE1
δρ

(ρ∗,n+ 1
2 ), and ρ∗,n+ 1

2 is defined as (11).

Theorem 4 Assume that ρ1 is obtained from the first-order scheme. The above second-order
scheme (19)–(20) exhibits the following attributes.

(i) Mass conservation:
∫
�

ρn dx = ∫
�

ρn+1 dx.
(ii) Positivity preserving: ρn+1 > 0.
(iii) Unique solvability.

Proof The proof is similar to that of Theorem 3. We can define a slightly different linear
operator L̃n as follows: L̃ng = u is defined by the elliptic equation

−∇ ·
(
ρ∗,n+ 1

2 ∇u
)

= g,
∫

�

u dx = 0

with the homogeneous Neumann boundary conditions or periodic boundary conditions. We
can also define a slightly different convex functional F̃ as follows:

F[ρn+1] := (
ρn+1(log ρn+1 − 1), 1

) +
⎛
⎝ 4rn − rn−1

3

√
E

∗,n+ 1
2

1 + C

δE
∗,n+ 1

2
1

δρ
, ρn+1

⎞
⎠

+ 1

12δt

(
3ρn+1 − 4ρn + ρn−1, L̃n

(
3ρn+1 − 4ρn + ρn−1))

+ 1

36(E
∗,n+ 1

2
1 + C)

⎛
⎝δE

∗,n+ 1
2

1

δρ
, 3ρn+1 − 4ρn + ρn−1

⎞
⎠

2

.

Then it can be shown that the solution of (19)–(20) is the unique minimizer of the above
convex functional.

For the same reason as the second-order scheme of the first approach (S1), we are unable
to show that the above second-order scheme is energy dissipative.
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2.3 Application to Onsager Gradient Flows

The Onsager gradient flow, as presented in Ref. [11], is as follows:

∂ρ

∂t
= ∇ ·

(
V1(ρ)∇ δE(ρ)

δρ

)
− V2(ρ)

δE(ρ)

δρ
, (21)

where E(ρ) is an energy functional, and V1, V2: R → R+ are positive mobility functions.
By decomposing the energy functional E(ρ) into two components: E(ρ) = E1(ρ)+ E2(ρ),
where E1 is bounded from below with a constant, E2 is convex with respect to ρ, and
introducing a scalar variable, r , defined as r = √

E1 + C , where C is a constant such that
E1 + C > 0, (21) can be written in the following manner:

∂ρ

∂t
= ∇ ·

(
V1∇

(
r√

E1 + C

δE1

δρ
+ δE2

δρ

))
− V2

(
r√

E1 + C

δE1

δρ
+ δE2

δρ

)
.

Then, following the construction strategy of (S1) and denoting V n
1 = V1(ρn) and V n

2 =
V2(ρn), we construct the following scheme:

ρn+1 − ρn

δt
= ∇ ·

(
V n
1 ∇

(
rn+1√
En
1 + C

δEn
1

δρ
+ δEn+1

2

δρ

))

+ V n
2

(
rn+1√
En
1 + C

δEn
1

δρ
+ δEn+1

2

δρ

)
, (22)

rn+1 − rn

δt
= 1

2
√
En
1 + C

(
δEn

1

δρ
,
ρn+1 − ρn

δt

)
. (23)

Taking the inner products of (22) with rn+1√
En
1+C

δEn
1

δρ
+ δEn+1

2
δρ

, of (23) with 2rn+1, we obtain

(
rn+1)2 − (

rn
)2 + (

rn+1 − rn
)2 + En+1

2 − En
2

� −δt

(
V n
1 ∇

(
rn+1√
En
1 + C

δEn
1

δρ
+ δEn+1

2

δρ

)
,∇

(
rn+1√
En
1 + C

δEn
1

δρ
+ δEn+1

2

δρ

))

− δt

(
V n
2

(
rn+1√
En
1 + C

δEn
1

δρ
+ δEn+1

2

δρ

)
,

(
rn+1√
En
1 + C

δEn
1

δρ
+ δEn+1

2

δρ

))
� 0.

Through appropriate choice of the form of E2, we can impose specific attributes for the
scheme (22)–(23). As an illustrative example, by selecting E2(ρ) = ∫

�
ρ(log ρ − 1) dx, we

can ensure that ρ remains positive.

Theorem 5 With E2(ρ) = ∫
�

ρ(log ρ − 1) dx, the scheme (22)–(23) exhibits the following
attributes.

(i) Positivity preserving: ρn+1 > 0.
(ii) Unique solvability.
(iii) Energy dissipation law:

Ẽn+1 − Ẽn � 0, (24)

where the discrete energy is defined as Ẽn = ∫
�

ρn (log ρn − 1) dx + (rn)2.

Proof The proof is almost the same as Theorem 3 excluding the mass conservation.
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3 Finite-Difference Discretization in Space

In this section, we turn our attention to the construction of finite-difference schemes that can
maintain the properties of the time discretizations discussed in the previous section. Since
integration by parts is essential in mass conservation and energy dissipation in the spatial
continuous case, a critical aspect in full discretization is to make sure that the implementation
of boundary conditions satisfies suitable summation by parts formulae. This task is relatively
straightforward in rectangular domains. Since the construction methodologies for (S1) are
essentially the same as those presented in [38]. Our subsequent discussion primarily focuses
on the 2D implementation of (S2).

Let the domain [0, L]2 be discretized into M2 points, designated as x j,k = ( (
j − 1

2

)
δx,(

k − 1
2

)
δx

)
for j, k = 1, · · · , M , with δx = L/M . Then, a fully discrete version of the

scheme (S2-1)–(S2-2) is

ρn+1
j,k − ρn

j,k

δt
= 1

δx2

[
ρn
j+1,k + ρn

j,k

2

(
ξn+1ϕn

j+1,k + μn+1
j+1,k − ξn+1ϕn

j,k − μn+1
j,k

)

− ρn
j,k + ρn

j−1,k

2

(
ξn+1ϕn

j,k + μn+1
j,k − ξn+1ϕn

j−1,k − μn+1
j−1,k

)
,

+ ρn
j,k+1 + ρn

j,k

2

(
ξn+1ϕn

j,k+1 + μn+1
j,k+1 − ξn+1ϕn

j,k − μn+1
j,k

)

−ρn
j,k + ρn

j,k−1

2

(
ξn+1ϕn

j,k + μn+1
j,k − ξn+1ϕn

j,k−1 − μn+1
j,k−1

)]
,

(25)

rn+1 − rn = δx2

2
√
En
1 + C

M∑
j,k=1

ϕn
j,k

(
ρn+1
j,k − ρn

j,k

)
, (26)

where ξn+1 = rn+1√
En
1+C

, ϕn
j,k = ( δE1

δρ
)nj,k, and μn

j,k = (log ρ)nj,k for 1 � j, k � M . To

illustrate the handling of boundary conditions, we consider, as an example, the Neumann
boundary conditions. For achieving summation by parts, it is necessary to impose boundary
terms as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ϕn+1
0,k − ϕn+1

1,k

δx
= 0,

ϕn+1
M+1,k − ϕn+1

M,k

δx
= 0,

μn+1
0,k − μn+1

1,k

δx
= 0,

μn+1
M+1,k − μn+1

M,k

δx
= 0.

(27)

By representing ρ̃n as a vector composed of the elements ρn
j,k , ϕ̃

n as a vector consisting of

ϕn
j,k , and μ̃n as a vector formed fromμn+1

j,k for 1 � j, k � M arranged in the lexicographical
order, we can rewrite the above into a matrix form as follows:

δx2

δt

(
ρ̃n+1 − ρ̃n) = −An

(
rn√

En
1 + C

ϕ̃n + δx2

2(En
1 + C)

(ϕ̃n)T
(
ρ̃n+1 − ρ̃n) ϕ̃n + μ̃n+1

)
.

(28)

Here, An is a sparse matrix with nonzero elements adjacent to its diagonal. Two indices ( j, k)
and ( j ′, k′) are considered adjacent if

∣∣ j − j ′
∣∣ + ∣∣k − k′∣∣ = 1. The diagonal entry of An is

2ρn
j,k + 1

2

(
ρn
j+1,k + ρn

j−1,k + ρn
j,k+1 + ρn

j,k−1

)
. (29)
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An is symmetric and diagonally dominant, with positive diagonal entries, ensuring it is
positive semi-definitewith non-negative eigenvalues. The eigen-decomposition of An is An =
WT�W where � = diag

(
0, μ2, · · · , μM2

)
and μ j > 0 for j = 2, · · · , M2. The pseudo-

inverse of An , denoted (An)∗, is defined as (An)∗ = WT diag
(
0, μ−1

2 , · · · , μ−1
M2

)
W . For

the term (ϕ̃n)T
(
ρ̃n+1 − ρ̃n

)
ϕ̃n , we have

(ϕ̃n)T
(
ρ̃n+1 − ρ̃n) ϕ̃n = ϕ̃n(ϕ̃n)T

(
ρ̃n+1 − ρ̃n) .

Defining�n = ϕ̃n(ϕ̃n)T, a positive semi-definitematrix, andmultiplying (28) by the pseudo-
inverse (An)∗, we obtain

δx2

δt
(An)∗

(
ρ̃n+1 − ρ̃n) + an1 ϕ̃n + an2�n (

ρ̃n+1 − ρ̃n) + μ̃n+1 = 0, (30)

where an1 = rn√
En
1+C

and an2 = δx2

2(En
1+C)

.

For the above scheme, we have

Theorem 6 The finite-difference scheme (25)–(26) enjoys the following properties.

(i) Mass conservation

δx2
M∑

j,k=1

ρn+1
j,k = δx2

M∑
j,k=1

ρn
j,k, 1 � i � N .

(ii) Positivity preserving: if ρn
j,k > 0 for ( j, k), we have ρn+1

j,k > 0 for all ( j, k).

(iii) Unique solvability: the scheme (25) possesses a unique solution ρn+1
j,k .

(iv) Energy dissipation law:

Ẽn+1 − Ẽn

� − δt

δx2

∑
1� j�M−1,1�k�M

ρnj+1,k + ρnj ,k

2

(
ξn+1ϕnj+1,k + μn+1

j+1,k − ξn+1ϕnj,k − μn+1
j,k

)2

+
∑

1� j�M,1�k�M−1

ρnj ,k+1 + ρnj ,k

2

(
ξn+1ϕnj ,k+1 + μn+1

j,k+1 − ξn+1ϕnj,k − μn+1
j,k

)2
,

where

Ẽn =
M∑

j,k=1

ρn
j,k

(
log ρn

j,k − 1
)

+ (rn)2.

Proof The mass conservation is obtained by taking the sum over 1 � j, k � M on (25) and
using the boundary conditions of (ϕ)nj,k and (μ)n+1

j,k in (27).
To prove the unique solvability and positivity preservation, we define

F[ρ̃n+1] = δx2

2δt

(
ρ̃n+1 − ρ̃n)T (An)∗

(
ρ̃n+1 − ρ̃n) + an1

(
ϕ̃n)T ρ̃n+1

+ an2
2

(
ρ̃n+1 − ρ̃n)T �n (

ρ̃n+1 − ρ̃n) + (
ρ̃n+1)T (

log ρ̃n+1 − 1
)
.

(31)

It is evident that F[ρ̃n+1] is strictly convexwith respect to ρ̃n+1, and (30) represents its Euler-
Lagrange equation. Consequently, the solution to (30) is the unique minimizer of F[ρ̃n+1]
with ρ̃n+1 > 0. As any element of ρ̃n+1 approaches zero, the gradient of F[ρ̃n+1] tends
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towards negative infinity, implying that the function’s value decreases when incrementing
elements near 0 in ρ̃n+1. Therefore, a minimizer with any zero element in ρ̃n+1 is not
attainable.

The energy dissipation law can be obtained bymultiplying (25) with ξn+1ϕn
j,k +μn+1

j,k and

multiplying (26) with 2rn+1. The summation by parts is used with the employed boundary
conditions of ϕn

j,k and μn+1
j,k .

4 Numerical Experiments

In this section, we present various numerical experiments to validate the theoretical results
discussed previously. It is important to note that our schemes require solving a nonlinear
system at every time step. To solve these nonlinear equations, we employ the damped New-
ton’s iteration method [22]. In scenarios where the density must remain positive, we enforce
the positivity by replacing ρ with max(ρ, ε), where 0 < ε 
 1 is a minimal threshold. We
set ε = 10−6 in the following experiments.

4.1 Accuracy Test

First, we test the accuracy in time of the schemes (S1) and (S2) by solving a heat equation
with Neumann boundary conditions:

⎧⎨
⎩

∂ρ

∂t
= 1

50
ρxx = 1

50
∂x (ρ∂x log(ρ)), x ∈ [0, 1], t > 0,

ρx (0, t) = ρx (1, t) = 0,
(32)

which can be expressed as a Wasserstein gradient flow with E(ρ) = ∫
�

1
50ρ(log ρ − 1) dx.

The exact solution is taken as ρ(x, t) = e−π2 t/50 cos(π x) + 1.1. To assess the accuracy of
our model, we employ both the L∞ error and the L2 error. These are defined by

eN∞ := max
i

∣∣∣ρN
i − ρ (xi , T )

∣∣∣ ,

eN2 :=
(

δx
I−1∑
i=1

(
ρN
i − ρ (xi , T )

)2) 1
2

,

where ρN
i is the value of ρN at xi .

To determine the convergent rate of different schemes, we utilize a fine mesh with a
finite-difference method, specifically setting N = 50 000. The time steps chosen are δt =
0.1, 0.05, 0.025, 0.012 5, with a final time of T = 1. For the scheme (S2), we decompose
the energy as

E(ρ) =
∫

�

1

50
ρ(log ρ − 1) dx =

∫
�

1

100
ρ(log ρ − 1) dx +

∫
�

1

100
ρ(log ρ − 1) dx.

It is observed that the schemes both (S1) and (S2) consistently demonstrate first-order con-
vergent rates in time (Tables 1 and 2).
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Table 1 Heat equation, the first-order convergent rate of (S1) in time

δx = 1/50 000 eN∞ eN2 Order of eN∞ Order of eN2

δt = 0.1 8.154 0E−03 3.047 3E−03 – –

δt = 0.05 4.110 1E−03 1.545 6E−03 0.988 3 0.979 4

δt = 0.025 2.057 8E−03 7.774 6E−04 0.998 1 0.991 3

δt = 0.012 5 1.024 4E−03 3.889 0E−04 1.006 3 0.999 4

Table 2 Heat equation, the first-order convergent rate of (S2) in time

δx = 1/50 000 eN∞ eN2 Order of eN∞ Order of eN2

δt = 0.1 3.279 8E−03 1.306 0E−03 – –

δt = 0.05 1.649 7E−03 6.581 5E−04 0.979 4 0.979 4

δt = 0.025 8.224 1E−04 3.292 6E−04 0.991 3 0.991 3

δt = 0.012 5 4.055 6E−04 1.635 2E−04 0.999 4 0.999 4

4.2 Barenblatt Solution

The Barenblatt solution, a fundamental benchmark for the PME, is widely used to test the
accuracy and efficiency of numerical methods. The PME, denoted by ∂ρ

∂t = �ρm , integrates
energy as E = ∫

�
1

m−1ρ
m(x) dx and takes the explicit form:

Bm,d(x, t) = (t + 1)−α

[
1 − α(m − 1)

2md

‖x‖2
(t + 1)2α/d

]1/(m−1)

+
,

where (s)+ = max(s, 0) and α = d
d(m−1)+2 . In this context, d = 2 represents the spatial

dimensions of the problem. To illustrate the precision and energy dissipation efficiency of
our proposed numerical schemes, we evaluate the solution from t0 = 0 to T = 1, with a time
step δt = 0.001 and spatial step δx = 0.25, over the domain � = (−10, 10)2. We utilize
schemes (S1) and (S2) for m = 3. For the scheme (S1), the energy is defined as

ES1 =
∫

�

ρ(x) (log ρ(x) − 1) dx.

For the scheme (S2), the original energy is defined as

ES2 =
∫

�

1

m − 1
ρm(x) dx,

and ES2 is decomposed into ES2 = E1,S2+∫
�

ρ(x) (log ρ(x) − 1) dx. Themodified energy
for (S2) is then defined as

ẼS2 = r2 +
∫

�

ρ(x) (log ρ(x) − 1) dx.

It is demonstrated that the quantity E1,S2, defined by

E1,S2 =
∫

�

(
ρm(x)

m − 1
− ρ(x) (log ρ(x) − 1)

)
dx,
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Fig. 1 Visualizations of the PME evolution with (S1) and (S2) at a cross-section y = 0 and energy dissipation
comparison for m = 3

is bounded from below when m � 2. In this context, setting C = 0 for (S2) is sufficient to
ensure E1,S2 remains positive.

Figures 1a and b display the solution’s evolution at the cross-section y = 0 for (S1) and
(S2), respectively. These figures confirm that our schemes can closely approximate the exact
solution, demonstrating their accuracy. Figures1c and d illustrate the energy dissipation for
(S1) and (S2), respectively, with Fig. 1d also comparing the original and modified energy,
which are observed to be consistent.

To evaluate the computational efficiency of our schemes,we compared the average number
of Newton iterations required every 50 steps (Fig. 2). Both (S1) and (S2) achieve convergence
with several Newton iterations, where only the initial few steps require slightly more iter-
ations. Thanks to its simpler structure, the scheme (S1) generally needs fewer iterations,
making it the preferred option when feasible.

4.3 Fokker-Planck Equation

To test the proposed schemes in the context of potential-influenced equations, we turn our
attention to the linear Fokker-Planck equation presented as

123



Communications on Applied Mathematics and Computation

Fig. 2 Comparative analysis of the average number of Newton iterations required for schemes (S1) and (S2)
every 50 computational steps over the simulation time from t0 = 0 to T = 1, demonstrating the relative
computational efficiency of each scheme

∂ρ

∂t
= �ρ + ∇ · (ρ∇V ) = ∇ · (ρ∇(log ρ + V )),

which is a Wasserstein gradient flow with the energy functional E(ρ) as

E(ρ) =
∫

�

(ρ(log(ρ) − 1) + ρV ) dx.

In this example, we take V (x, y) = x2+y2

2 which will guide the system towards a unique and
globally stable equilibrium, irrespective of the initial conditions. The equilibrium state, also
known as the heat kernel, is analytically defined as

ρ(x, y, t) = 1

4π t
exp

(
− x2 + y2

4t

)
, (33)

evaluated at t = 1
2 , i.e., ρ∞ = ρ(x, y, 1/2).

For our numerical experiments, we adopt an initial state ρ(x, y, 1) to approximate the
above-mentioned steady state, ρ(x, y,∞). Both schemes, (S1) and (S2), are employed for
this purpose, and the resultant solutions at the final time T = 4 are presented in Fig. 3. For
the scheme (S2), the decomposed energy functional E2,S2 is specifically taken as E2,S2(ρ) =∫
�

ρ(log ρ−1) dx. We also setC as 10 to keep E1,S2+C positive, where E1,S2 = E−E2,S2.
As illustrated in Fig. 4, (S1) and (S2) exhibit comparable averages in the number of Newton
iterations throughout most of the simulation.

4.4 PMEwith Variousm and a Slow Drift

The PME with a slow drift has earned notable attention in optimal transfers, particularly
when accompanied by a high value ofm [24]. A general energy functional for such scenarios
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Fig. 3 Solution profiles for the Fokker-Planck equation. The simulation begins with the initial condition
ρ(x, y, 1) as described in (33). The reference steady state is given by ρ∞. Additionally, cross-sectional views
of the solution at y = 0 are presented in a, d

Fig. 4 The average number of Newton iterations for schemes (S1) and (S2), measured every 200 computational
steps from t0 = 0 to T = 4
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Fig. 5 On the left, the initial state is set to a random configuration using the seed(1). On the right, we depict
the potential function given by V (x, y) = 1 − sin(5π x) sin(3π y)

can be expressed as

E(ρ) =
∫

�

(
1

m − 1
ρm(x) + ρ(x)V (x)

)
dx, (34)

where V (x) is a given potential function. For the scope of this study, we take V (x, y) =
1−sin(5π x) sin(3π y). Our simulations are conducted on a domain of [−1, 1]2, using a grid
of 50 × 50 spatial points. The initial conditions are randomly set within the [−1, 1]2 range.
The graphical representations of the initial density and the potential function are available in
Fig. 5.

Our scheme (S1) does not enjoy the energy dissipation law when m � 2, whereas the
scheme (S2) is energy dissipative with respect to a modified energy. Hence, we test our
scheme (S2) across different values of m: m = 2, 4, 6, 20, 50, 100 to understand how the
results change as m increases. For the scheme (S2), the decomposed energy functional E2 is
specifically taken as E2(ρ) = ∫

�
ρ(log ρ−1) dx. We also setC as 5 to keep E1+C positive,

where E1 = E − E2. For all values of m, we run simulations from T = 0 to T = 0.04 to
observe the evolution over time and the approach to the steady state. The results in Fig. 6
indicate that regions with lower potential attract higher density and that the steady state with
larger m appears to be significantly more dispersed than the steady state with smaller m.
Figure7 shows the evolution of the modified energy and original energy for the scheme (S2).
Although the modified energy decays slightly faster than the original energy with larger m,
both energies consistently exhibit dissipative behavior throughout the evolution.

4.5 Fisher-KPP Equation

As a special case of Onsager gradient flows (21), we consider the Fisher-KPP equation [7,
31] characterized by potentials V1(ρ) = αρ and V2(ρ) = ρ(ρ−1)

2 log(ρ)
. The energy associated

with this system is given by

E(ρ) :=
∫

�

2ρ(log(ρ) − 1) dx + C .

Then, the equation can be presented as follows:

∂ρ

∂t
= ∇ · (2αρ∇ log ρ) + ρ(1 − ρ).
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Fig. 6 Evolution of the PME with a slow drift for various values of m. The time evolution is observed until
T = 0.04 for all values of m. The results show that regions with lower potential attract higher density, with
the steady state appearing more dispersed for larger m values compared to smaller m values

Fig. 7 Energy dissipation of the PME with a slow drift for various values of m
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Fig. 8 Evolutionary behavior of the Fisher-KPP equation. The left figure delineates the density evolution from
t0 = 0 to T = 10, emphasizing the initial and terminal states via the red line. The right figure compares the
dissipation of the modified energy and original energy

We fix the domain � = [0, 1], and set the parameters α = 10−4, C = 5. The initial
condition for the density ρ is defined as ρ(x, 0) = 0.4 for 0 � x < 1/2 and ρ(x, 0) = 0
otherwise. For the numerical simulation of the system, we employ the scheme (S2) with
E1 = ∫

�
ρ(log(ρ) − 1) dx + C and E2 = ∫

�
ρ(log(ρ) − 1) dx combined with a finite-

difference discretization. In this example, we use N = 100 spatial grid points and a time step
size of δt = 10−4.

Figure8 provides a visual representation of the system’s behavior. The left figure illustrates
the evolution of the system for time intervals ranging from t0 = 0 to T = 10, with the initial
and final states being demarcated by the red line. The right figure contrasts the modified
energy with the original energy, showcasing the energy dissipation as time progresses.

5 Concluding Remarks

In this paper,we introduced twonovel numerical schemes specifically tailored forWasserstein
gradient flows. The first scheme is a generalization of the schemes proposed in Refs. [20, 38],
while the second scheme is based on energy splitting along with a scalar auxiliary variable
to ensure energy dissipation. We demonstrated that both schemes ensure mass conservation,
positivity preserving, unique solvability, and the first scheme is energy dissipative in some
special cases while the second scheme is energy dissipative with a modified energy.

These schemes were designed to address the challenges associated with Wasserstein gra-
dient flows, particularly in preserving positivity and energy dissipation. Each scheme was
rigorously tested through a series of numerical experiments, affirming their theoretical pre-
cision and computational efficiency. The results confirmed that our schemes not only align
with theoretical predictions but also demonstrate significant computational improvements.

In summary, the schemes proposed in this work are both robust and practically efficient
for solving a class of Wasserstein gradient flows, paving the way for further exploration in
diverse scientific and engineering fields.
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