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A B S T R A C T

In this paper, we develop efficient implicit-explicit (IMEX) schemes for solving sixth-order Cahn–
Hilliard-type equations based on the generalized scalar auxiliary variable (GSAV) approach.
These novel schemes provide several remarkable advantages: (i) they are linear and only
require solving one elliptic equation with constant coefficients at each time step; (ii) they are
unconditionally energy stable and yield a uniform bound for the numerical solution. We also
establish rigorous error estimates of up to fifth-order for these schemes, and present various
numerical experiments to validate the stability and accuracy of the proposed schemes.

. Introduction

We consider the following energy functional [1,2]:

𝐸(𝑢) = ∫𝛺

[

1
2
|

|

|

−𝜖2𝛥𝑢 + 𝑓 (𝑢)||
|

2
+ 𝜂

(

𝜖2

2
|∇𝑢|2 + 𝐹 (𝑢)

)]

𝑑𝒙, (1.1)

here the parameter 𝜖 > 0 denotes the interfacial width, and 𝐹 (𝑢) is a configuration potential function defined as 𝐹 (𝑢) = 1
4 (𝑢

2 − 1)2,
ith its derivative denoted by 𝑓 (𝑢) = 𝐹 ′(𝑢). It is important to note that the model parameter 𝜂 ∈ R and the sign of 𝜂 hold significance

n both modeling and applications: For 𝜂 = 0, the energy functional 𝐸(𝑢) corresponds to the well-known Willmore functional [3,4],
hich approximates the Canham–Helfrich bending surface energy, and has been effectively utilized in the study of deformations
f elastic vesicles [5–7]; For 𝜂 > 0, 𝐸(𝑢) is the Willmore regularization of the Cahn–Hilliard energy (CHW) [8,9] which has been
sed to investigate the significant anisotropy effects that arise during the growth and coarsening of thin films; For 𝜂 < 0, 𝐸(𝑢) is
he functionalized Cahn–Hilliard (FCH) free energy [10,11], which describes the characteristics of the amphiphilic polymer phase
t the interface.
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We study the following gradient flow equations associated with the free energy given by (1.1):
⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝑢 = 𝛥𝜇 , 𝑡 > 0, 𝒙 ∈ 𝛺 ,
𝜇 = −𝜖2𝛥𝜔 + 𝑓 ′(𝑢)𝜔 + 𝜂 𝜔, 𝑡 > 0, 𝒙 ∈ 𝛺 ,
𝜔 = −𝜖2𝛥𝑢 + 𝑓 (𝑢), 𝑡 > 0, 𝒙 ∈ 𝛺 ,

(1.2)

subject to either

the periodic boundary conditions, (1.3)

or the homogeneous Neumann boundary conditions:

𝜕𝐧𝑢 = 𝜕𝐧𝜇 = 𝜕𝐧𝜔 = 0, on 𝜕 𝛺 , (1.4)

and the initial condition is given by 𝑢|𝑡=0 = 𝑢0(𝒙), 𝒙 ∈ 𝛺. The function 𝜇 denotes the chemical potential, defined as the first
ariational derivative of the energy functional in (1.1). Similarly, the first variational derivative of the Cahn–Hilliard free energy, as
eferenced in [12], is represented by 𝜔. In the above system,  > 0 represents a mobility constant. By taking the inner product of

the first equation in (1.2) with 𝜇, the second and the last equations in (1.2) with 𝜕𝑡𝑢, we can derive the following energy dissipation
law:

𝑑
𝑑 𝑡𝐸(𝑢) = −‖∇𝜇‖2. (1.5)

The system (1.2) consists of three coupled second-order equations. It can alternatively be formulated as a sixth-order Cahn–
Hilliard-type equation for the variable 𝑢. Numerical approximation of the system is very challenging due to the high-order derivatives
and nonlinearity. Several attempts have been made in the literature to develop efficient and accurate numerical schemes for Eq. (1.2).
For instance, in [13,14], the authors proposed semi-implicit schemes with a linear stabilizer, which are conditionally energy stable.

dditionally, a fully implicit scheme based on the convex splitting approach was considered in [8,15], which includes a convergence
analysis. More recently, the authors of [2,9,16] proposed linear, unconditional energy stability schemes based on the original scalar
uxiliary variable approach [17,18]. However, their error analysis is not yet available, and it is not clear how to extend these
chemes to higher-order while keeping the energy stability.

The primary objective of this paper is to develop a class of high-order IMEX schemes for (1.2) using the generalized SAV (GSAV)
approach [19,20] and carry out the corresponding error analysis. Our contributions can be summarized as follows:

• We develop a class of high-order IMEX schemes which possess several notable advantages: (i) firstly, they are purely linear
and only require solving a single elliptic equation with constant coefficients at each time step; (ii) secondly, they satisfy a
modified energy dissipation law, and their numerical solutions are unconditionally bounded.

• We perform a rigorous error analysis for these schemes up to fifth-order in a unified framework.

Due to the highly nonlinear nature, the error analysis here is significantly more challenging than the one in [20]. To the best of our
nowledge, these are the first error analyses for higher-order numerical schemes for the sixth-order Cahn–Hilliard-type Eq. (1.2).

While this analysis is established for the semi-discrete (in time) schemes, it is expected that error estimates for fully discrete schemes
with consistent Galerkin type spatial discretization can also be derived.

The remainder of the paper is organized as follows. In Section 2, we develop a class of IMEX-GSAV schemes, and derive an
unconditional bound for their numerical solutions. In Section 3, we conduct a rigorous error analysis for the newly proposed schemes
p to fifth-order in a unified framework. We then present some numerical experiments in Section 4, followed by some concluding
emarks in Section 5.

2. New IMEX schemes based on the GSAV approach

In this section, we construct a class of new IMEX schemes based on the GSAV approach for the six-order Cahn–Hilliard-type Eq.
(1.2), and show that their numerical solutions are uniformly bounded.

Introducing an SAV 𝑟(𝑡) = 𝐸(𝑢) + 𝐿0 where 𝐿0 > 0 so that 𝑟(𝑡) ≥ 1 > 0, we expand the system (1.2) with the energy dissipation
law (1.5) as follows [19,21]:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑡𝑢 = 𝛥𝜇 , 𝑡 > 0, 𝒙 ∈ 𝛺 ,
𝜇 = −𝜖2𝛥𝜔 + 𝑓 ′(𝑢)𝜔 + 𝜂 𝜔, 𝑡 > 0, 𝒙 ∈ 𝛺 ,
𝜔 = −𝜖2𝛥𝑢 + 𝑓 (𝑢), 𝑡 > 0, 𝒙 ∈ 𝛺 ,
𝑑𝑡𝑟 = − 𝑟(𝑡)

𝐸(𝑢) + 𝐿0
‖∇𝜇‖2,

(2.1)

where the boundary conditions for 𝑢, 𝜇 , 𝜔 are either (1.3) or (1.4). Note that the solution of (1.2) is a solution of the above system
ith 𝑟(0) = 𝐸(𝑢| ) + 𝐿 .
2

𝑡=0 0
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Following [21], we construct the 𝑘th-order (1 ≤ 𝑘 ≤ 6) IMEX schemes for arbitrary 𝜂 ∈ R in a uniform way as follows:
𝛼𝑘𝑢̄𝑛+1 − 𝐴𝑘(𝑢𝑛)

𝛥𝑡
= 𝛥 ̄𝜇𝑛+1,

𝜇̄𝑛+1 = −𝜖2𝛥 ̄𝜔𝑛+1 + (𝑓 ′(𝐵𝑘(𝑢̄𝑛)) + 𝜂)𝐵𝑘(𝜔̄𝑛),

𝜔̄𝑛+1 = −𝜖2𝛥 ̄𝑢𝑛+1 + 𝑓 (𝐵𝑘(𝑢̄𝑛)),

(2.2a)

𝑟𝑛+1 − 𝑟𝑛

𝛥𝑡
= − 𝑟𝑛+1

𝐸(𝑢̄𝑛+1) + 𝐿0
‖∇𝜇̄𝑛+1

‖

2, (2.2b)

𝜉𝑛+1 = 𝑟𝑛+1

𝐸(𝑢̄𝑛+1) + 𝐿0
, (2.2c)

𝑢𝑛+1 = 𝜂𝑛+1𝑘 𝑢̄𝑛+1 with 𝜂𝑛+1𝑘 = 1 − (1 − 𝜉𝑛+1)𝑘+1. (2.2d)

where the boundary conditions for 𝑢𝑛+1, 𝜇𝑛+1, 𝜔𝑛+1 are either

the periodic boundary conditions, (2.3)

or the no-flux type as:

𝜕𝐧𝑢
𝑛+1 = 𝜕𝐧𝜇

𝑛+1 = 𝜕𝐧𝜔
𝑛+1 = 0. (2.4)

In the above, 𝛼𝑘, 𝐴𝑘 and 𝐵𝑘 are given by:
first-order:

𝛼1 = 1, 𝐴1(𝑢𝑛) = 𝑢𝑛, 𝐵1(𝑢̄𝑛) = 𝑢̄𝑛;

second-order:

𝛼2 =
3
2
, 𝐴2(𝑢𝑛) = 2𝑢𝑛 − 1

2
𝑢𝑛−1, 𝐵2(𝑢̄𝑛) = 2𝑢̄𝑛 − 𝑢̄𝑛−1;

third-order:

𝛼3 =
11
6
, 𝐴3(𝑢𝑛) = 3𝑢𝑛 − 3

2
𝑢𝑛−1 + 1

3
𝑢𝑛−2, 𝐵3(𝑢̄𝑛) = 3𝑢̄𝑛 − 3𝑢̄𝑛−1 + 𝑢̄𝑛−2.

fourth-order:

𝛼4 =
25
12

, 𝐴4(𝑢𝑛) = 4𝑢𝑛 − 3𝑢𝑛−1 + 4
3
𝑢𝑛−2 − 1

4
𝑢𝑛−3, 𝐵4(𝑢̄𝑛) = 4𝑢̄𝑛 − 6𝑢̄𝑛−1 + 4𝑢̄𝑛−2 − 𝑢̄𝑛−3;

fifth-order:

𝛼5 =
137
60

, 𝐴5(𝑢𝑛) = 5𝑢𝑛 − 5𝑢𝑛−1 + 10
3
𝑢𝑛−2 − 5

4
𝑢𝑛−3 + 1

5
𝑢𝑛−4,

𝐵5(𝑢̄𝑛) = 5𝑢̄𝑛 − 10𝑢̄𝑛−1 + 10𝑢̄𝑛−2 − 5𝑢̄𝑛−3 + 𝑢̄𝑛−4;

sixth-order:

𝛼6 =
147
60

, 𝐴6(𝑢𝑛) = 6𝑢𝑛 − 15
2
𝑢𝑛−1 + 20

3
𝑢𝑛−2 − 15

4
𝑢𝑛−3 + 6

5
𝑢𝑛−4 − 1

6
𝑢𝑛−5,

𝐵6(𝑢̄𝑛) = 6𝑢̄𝑛 − 15𝑢̄𝑛−1 + 20𝑢̄𝑛−2 − 15𝑢̄𝑛−3 + 6𝑢̄𝑛−4 − 𝑢̄𝑛−5.

Note that (2.2b)–(2.2d) can be carried out directly without solving any differential equations. Therefore the main computational
ost is in (2.2a) which is a system with three coupled second-order equations with constant coefficients in the following form:

𝛼 ̄𝑢 −𝛥 ̄𝜇 = 𝑓 ,
𝜇̄ + 𝜖2𝛥 ̄𝜔 = 𝑔̄ ,
𝜔̄ + 𝜖2𝛥 ̄𝑢 = ℎ̄,

(2.5)

with either periodic boundary conditions or the homogeneous Neumann boundary conditions.

• If the boundary conditions are periodic, by using the Fourier-spectral method in space, the coupled linear equations in (2.2a) in
the frequency space reduce to a diagonal system so it can be easily solved. More precisely, by using the fast Fourier transform,
the total cost of solving (2.2a) is 𝑂(𝑁𝑑 𝑙 𝑜𝑔 𝑁) where 𝑁 is the number of points in each direction and 𝑑 is the dimension of the
domain.

• On the other hand, if the boundary conditions are homogeneous Neumann for 𝑢, 𝜇 , 𝜔, the coupled system (2.2a) can also be
efficiently solved by using a matrix diagonalization method presented in [13] with the spectral-Galerkin approximation in
space. The total cost is essentially the same as solving three decoupled second-order equations with constant coefficients.

In summary, we can obtain 𝑢̄𝑛+1, 𝑟𝑛+1, 𝜉𝑛+1 and 𝑢𝑛+1 from (2.2) as follows:

– Solve (𝑢̄𝑛+1, 𝜇̄𝑛+1, 𝜔̄𝑛+1) from (2.2a);
– Determine 𝑟𝑛+1 from (2.2b);
– Compute 𝜉𝑛+1, 𝜂𝑛+1𝑘 and update 𝑢𝑛+1 from (2.2c)–(2.2d).
3
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𝑀

2.1. A stability result

We show below that the numerical solution of (2.2) is uniformly bounded. To this end, we need to first establish a lower bound
for the nonlinear part of the free energy.

Lemma 2.1. Let 𝐸(𝑢) = ∫𝛺[
1
4 𝜖

4
|𝛥𝑢|2 + 𝛼

2 𝑢
2]𝑑𝒙 + 𝐸1(𝑢), where

𝐸1(𝑢) ∶= ∫𝛺

[

1
4
𝜖4|𝛥𝑢|2 + ( 𝜂

2
− 1)𝜖2|∇𝑢|2 + 1

2
𝑓 2(𝑢) + 3𝜖2𝑢2|∇𝑢|2 + 𝜂𝐹 (𝑢) + 𝛼2 − 2𝛼 𝜂

4𝜂

]

𝑑𝒙,

with 𝛼 > 0 and 𝐹 (𝑢) = 1
4 (𝑢

2 − 1 + 𝛼
𝜂 )

2. There exists 𝐿0 > 0 such that 𝐸1(𝑢) ≥ −𝐿0 + 1 for all 𝑢 ∈ 𝐻2(𝛺).

Proof. Since 𝑓 (𝑢) = 𝑢3 − 𝑢, we have

𝐸(𝑢) =∫𝛺

[

1
2
| − 𝜖2𝛥𝑢 + 𝑓 (𝑢)|2 + 𝜂

(

𝜖2

2
|∇𝑢|2 + 𝐹 (𝑢)

)]

𝑑𝒙

=∫𝛺

[ 1
2
𝜖4|𝛥𝑢|2 + ( 𝜂

2
− 1)𝜖2|∇𝑢|2 + 1

2
𝑓 2(𝑢) − 𝜖2𝑢3𝛥𝑢 + 𝜂 𝐹 (𝑢)

]

𝑑𝒙

=∫𝛺

[

1
2
𝜖4|𝛥𝑢|2 + 𝛼

2
𝑢2 + ( 𝜂

2
− 1)𝜖2|∇𝑢|2 + 1

2
𝑓 2(𝑢) + 3𝜖2𝑢2|∇𝑢|2 + 𝜂𝐹 (𝑢)+

𝛼2 − 2𝛼 𝜂
4𝜂

]

𝑑𝒙

∶=∫𝛺
[ 1
4
𝜖4|𝛥𝑢|2 + 𝛼

2
𝑢2]𝑑𝒙 + 𝐸1(𝑢).

(2.6)

Hence, if 𝜂
2 − 1 ≥ 0, we have 𝐸1(𝑢) ≥ 0. On the other hand, if 𝜂

2 − 1 < 0, we derive from integration by parts that

−∫𝛺
(
𝜂
2
− 1)𝜖2|∇𝑢|2𝑑𝒙 = ( 𝜂

2
− 1)𝜖2(𝛥𝑢, 𝑢) ≤ ∫𝛺

1
4
𝜖4|𝛥𝑢|2 + ( 𝜂

2
− 1)2𝑢2𝑑𝒙.

Since 𝑓 2(𝑢) = (𝑢3 − 𝑢)2, one easily derive from the above that there exists 𝐿0 > 0 such that 𝐸1(𝑢) ≥ −𝐿0 + 1. □

Theorem 2.1. Given 𝑟𝑛 ≥ 0, we have 𝑟𝑛+1 ≥ 0, 𝜉𝑛+1 ≥ 0, and the schemes (2.2) are unconditionally energy stable in the sense that
𝑟𝑛+1 − 𝑟𝑛 ≤ −𝛥𝑡𝜉𝑛+1‖∇𝜇̄𝑛+1

‖

2 ≤ 0. (2.7)

Furthermore, there exists 𝑀𝑘 > 0 such that
‖𝑢𝑛+1‖2

𝐻2 ≤ 𝑀𝑘. (2.8)

Proof. Given 𝑟𝑛 > 0 and since 𝐸(𝑢̄𝑛+1)+𝐿0 > 0, it follows from (2.2b) that

𝑟𝑛+1 = 𝑟𝑛

1 + 𝛥𝑡 ‖∇𝜇̄𝑛+1‖2
𝐸(𝑢̄𝑛+1)+𝐿0

≥ 0.

Then we derive from (2.2c) that 𝜉𝑛+1 ≥ 0 and obtain (2.7).
Denote 𝑀0 ∶= 𝑟0 = 𝐸[𝑢(⋅, 0)], then (2.7) implies 𝑟𝑛 ≤ 𝑀0.
Since 𝐸1(𝑢) + 𝐿0 ≥ 1 for all 𝑢. It then follows from (2.2c) that

|𝜉𝑛+1| = 𝑟𝑛+1

𝐸(𝑢̄𝑛+1) + 𝐿0
≤

𝑀0
1
4 𝜖

4
‖𝛥 ̄𝑢𝑛+1‖2 + 𝛼

2 ‖𝑢̄
𝑛+1

‖

2 + 1
. (2.9)

Let 𝜂𝑛+1𝑘 = 1 − (1 − 𝜉𝑛+1)𝑘+1, we have 𝜂𝑛+1𝑘 = 𝜉𝑛+1𝑃𝑘(𝜉𝑛+1) with 𝑃𝑘 being a polynomial of degree 𝑘. Then, we derive that there exists
̃ 𝑘 > 0 such that

|𝜂𝑛+1𝑘 | =|𝜉𝑛+1𝑃𝑘(𝜉𝑛+1)| ≤
𝑀̃𝑘

𝜖4‖𝛥 ̄𝑢𝑛+1‖2 + 2𝛼‖𝑢̄𝑛+1‖2 + 4 ,

which, together with 𝑢𝑛+1 = 𝜂𝑛+1𝑘 𝑢̄𝑛+1, implies

‖𝛥𝑢𝑛+1‖2 = (𝜂𝑛+1𝑘 )2‖𝛥 ̄𝑢𝑛+1‖2 ≤
(

𝑀̃𝑘

𝜖4‖𝛥 ̄𝑢𝑛+1‖2 + 2𝛼‖𝑢̄𝑛+1‖2 + 4
)2

‖𝛥 ̄𝑢𝑛+1‖2 ≤ (
𝑀̃𝑘

𝜖2
)2, (2.10)

‖𝑢𝑛+1‖2 = (𝜂𝑛+1𝑘 )2‖𝑢̄𝑛+1‖2 ≤
(

𝑀̃𝑘

𝜖4‖𝛥 ̄𝑢𝑛+1‖2 + 2𝛼‖𝑢̄𝑛+1‖2 + 4
)2

‖𝑢̄𝑛+1‖2 ≤ (
𝑀̃𝑘
2𝛼

)2, (2.11)

using integration by parts and Cauchy inequality yields

‖∇𝑢‖2 = −(𝑢, 𝛥𝑢) ≤ 1
2
‖𝑢‖2 + 1

2
‖𝛥𝑢‖2 ≤ ( 1

2𝜖4
+ 1

8𝛼2
)(𝑀̃𝑘)2, (2.12)

which implies the desired result (2.8). □
4
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3. Error analysis

We carry out a rigorous error analysis for the schemes (2.2) in this section. We first recall some preliminary lemmas, which will
e extensively utilized in the subsequent analyses.

3.1. Some useful lemmas

Lemma 3.1 (Interpolation Inequality [22,23]). Let 0 ≤ 𝑠1 ≤ 𝑠2, 𝜃 ∈ (0, 1) and 𝑠 = 𝜃 𝑠1 + (1 − 𝜃)𝑠2. Then,
‖𝑢‖𝐻𝑠(𝛺) ≤ 𝐶‖𝑢‖𝜃𝐻𝑠1 (𝛺)‖𝑢‖

1−𝜃
𝐻𝑠2 (𝛺).

Lemma 3.2 (Discrete Grönwall’s Inequalities [24,25]). Let 𝑘 > 0 and 𝑇 > 0, suppose that 𝑦𝑛, ℎ𝑛, 𝑔𝑛, 𝑓 𝑛 are four nonnegative sequences
satisfying

𝑦𝑚 + 𝑘
𝑚
∑

𝑛=0
ℎ𝑛 ≤ 𝐵 + 𝑘

𝑚
∑

𝑛=0
(𝑔𝑛𝑦𝑛 + 𝑓 𝑛),with 𝑘

𝑇 ∕𝑘
∑

𝑛=0
𝑔𝑛 ≤ 𝑀 , ∀ 0 ≤ 𝑚 ≤ 𝑇 ∕𝑘.

If 𝑘𝑔𝑛 < 1, ∀ 0 ≤ 𝑛 ≤ 𝑇 ∕𝑘, then it holds that for 𝜎 = max0≤𝑛≤𝑇 ∕𝑘(1 − 𝑘𝑔𝑛)−1,

𝑦𝑚 + 𝑘
𝑚
∑

𝑛=1
ℎ𝑛 ≤ exp(𝜎 𝑀)(𝐵 + 𝑘

𝑚
∑

𝑛=0
𝑓 𝑛), ∀𝑚 ≤ 𝑇 ∕𝑘.

Next, we recall a useful lemma by Nevanlinna and Odeh (1981) which plays a key role in our analysis.

Lemma 3.3 ([26,27]). For 1 ≤ 𝑘 ≤ 5, there exists 0 ≤ 𝜏𝑘 < 1, a positive definite symmetric matrix 𝐺 = (𝑔𝑖,𝑗 ) ∈ R𝑘,𝑘 and real numbers
𝛿0,… , 𝛿𝑘 such that

(𝛼𝑘𝑢𝑛+1 − 𝐴𝑘(𝑢𝑛), 𝑢𝑛+1 − 𝜏𝑘𝑢
𝑛) =

𝑘
∑

𝑖,𝑗=1
𝑔𝑖,𝑗 (𝑢𝑛+1+𝑖−𝑘, 𝑢𝑛+1+𝑗−𝑘)

−
𝑘
∑

𝑖,𝑗=1
𝑔𝑖,𝑗 (𝑢𝑛+𝑖−𝑘, 𝑢𝑛+𝑗−𝑘) +

‖

‖

‖

‖

‖

‖

𝑘
∑

𝑖=0
𝛿𝑖𝑢

𝑛+1+𝑖−𝑘
‖

‖

‖

‖

‖

‖

2

,

(3.1)

where the smallest possible values of 𝜏𝑘 are
𝜏1 = 𝜏2 = 0, 𝜏3 = 0.0836, 𝜏4 = 0.2878, 𝜏5 = 0.8160.

Remark 3.1. Note that Akrivis et al. [27] have introduced a novel multiplier which allowed them to extend Lemma 3.3 to the
sixth-order BDF method. It is anticipated that the results in Theorems 2.1 and 3.1 can also be extended to the sixth-order by using
he result in [27].

3.2. Error estimates

For the sake of simplicity, we fix the mobility constant  = 1. In order to simplify the analysis, we first rewrite the system (1.2)
(resp. the scheme (2.2a)) into a single equation with six-order derivatives:

𝛼𝑘𝑢̄𝑛+1 − 𝐴𝑘(𝑢𝑛)
𝛥𝑡

=𝜖4𝛥3𝑢̄𝑛+1 − 𝜖2𝛥2𝑓 (𝐵𝑘(𝑢̄𝑛))

+ 𝛥(𝑓 ′(𝐵𝑘(𝑢̄𝑛))𝐵𝑘(𝜔̄𝑛)) + 𝜂 𝛥𝐵𝑘(𝜔̄𝑛).
(3.2)

We denote

𝑒𝑛 = 𝑢̄𝑛 − 𝑢(𝑡𝑛), 𝑒𝑛 = 𝑢𝑛 − 𝑢(𝑡𝑛), 𝑒𝑛𝑟 = 𝑟𝑛 − 𝑟(𝑡𝑛).

The main result of this section is stated in the following theorem.

Theorem 3.1. Assume that 𝑢 ∈ 𝐶(0, 𝑇 ;𝐻5(𝛺)) ∩𝐻𝑘(0, 𝑇 ;𝐻4(𝛺)) ∩𝐻𝑘+1(0, 𝑇 ;𝐻1(𝛺)). Let 𝑢̄𝑞 and 𝑢𝑞 (𝑞 = 1,… , 𝑘 − 1) be determined
by a proper 𝑘th order initialization procedure. Let 𝑢̄𝑛+1 and 𝑢𝑛+1 be computed with the 𝑘th order scheme (2.2) with

𝜂𝑛+11 = 1 − (1 − 𝜉𝑛+1)3, 𝜂𝑛+1𝑘 = 1 − (1 − 𝜉𝑛+1)𝑘+1 (2 ≤ 𝑘 ≤ 5).

Then we have
5
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𝐼

‖𝑒𝑛+1‖2
𝐻2 + ‖𝑒𝑛+1‖2

𝐻2 ≤ 𝐶 𝛥𝑡2𝑘, 1 ≤ 𝑘 ≤ 5,

where the constant 𝐶 is independent of 𝛥𝑡.

Proof. As in [20], an essential step of the proof is to show that there exists an absolute constant 𝐶0 independent of 𝛥𝑡 such that

|1 − 𝜉𝑞| ≤ 𝐶0𝛥𝑡, ∀𝑞 ≤ 𝑇 ∕𝛥𝑡, (3.3)

by using an induction method with the help of a bootstrap argument.
When 𝑞 = 0, (3.3) certainly holds. Assuming that |1 − 𝜉𝑞| ≤ 𝐶0𝛥𝑡 is valid for ∀𝑞 ≤ 𝑚, we shall prove by induction that

|1 − 𝜉𝑚+1| ≤ 𝐶0𝛥𝑡.

We shall first consider 𝑘 = 2, 3, 4, 5 and indicate the necessary modifications for 𝑘 = 1. The induction process consists of the
following two steps.

Step 1: Bounds for ‖𝑢̄𝑛+1‖𝐻2 and ‖𝑢̄𝑛+1‖𝐻5 for all 0 ≤ 𝑛 ≤ 𝑚.
By following a similar procedure as outlined in [20], based on the induction assumption and using the given condition

𝛥𝑡 ≤ min{ 1
2𝐶𝑘+1

0

, 1}, (3.4)

we can readily obtain

|1 − 𝜂𝑞𝑘| ≤
𝛥𝑡𝑘

2
, ∀𝑞 ≤ 𝑚.

By the assumptions on the exact solution 𝑢 and (2.8), we can choose 𝐶 large enough such that for any 𝑡 ≤ 𝑇 and 𝑞 ≤ 𝑚, we have

‖𝑢(𝑡)‖𝐻5 ≤ 𝐶 , ‖𝑢̄𝑞‖𝐻2 ≤ 𝐶 . (3.5)

Due to 𝐻2 ⊆ 𝐿∞, we can assume that 𝐶 also satisfies

|𝑓 (𝑖)(𝑢(𝑡))|𝐿∞ ≤ 𝐶 , |𝑓 (𝑖)(𝑢̄𝑞)|𝐿∞ ≤ 𝐶 , 𝑖 = 0, 1, 2, 3. (3.6)

By subtracting Eq. (2.2a) from Eq. (1.2) at 𝑡𝑛+1, we obtain an error equation that corresponds to

𝛼𝑘𝑒
𝑛+1 − 𝐴𝑘(𝑒𝑛) = 𝐴𝑘(𝑢𝑛) − 𝐴𝑘(𝑢̄𝑛) + 𝜖4𝛥𝑡𝛥3𝑒𝑛+1 + 𝑅𝑛

𝑘 + 𝜖2𝛥𝑡
3
∑

𝑖=1
𝛥𝑄𝑛

𝑖 , (3.7)

where

𝑄𝑛
1 = − 𝛥𝑓 (𝐵𝑘(𝑢̄𝑛)) + 𝛥𝑓 (𝑢(𝑡𝑛+1)),

𝑄𝑛
2 =

1
𝜖2

𝑓 ′(𝐵𝑘(𝑢̄𝑛))𝐵𝑘(𝜔̄𝑛) − 1
𝜖2

𝑓 ′(𝑢(𝑡𝑛+1))𝜔(𝑡𝑛+1),

𝑄𝑛
3 =

𝜂
𝜖2

𝐵𝑘(𝜔̄𝑛) − 𝜂
𝜖2

𝜔(𝑡𝑛+1),

and truncation error defined by

𝑅𝑛
𝑘 =𝛥𝑡

(

𝜕𝑡𝑢(𝑡𝑛+1) −
𝛼𝑘𝑢(𝑡𝑛+1) − 𝐴𝑘(𝑢(𝑡𝑛))

𝛥𝑡

)

=
𝑘
∑

𝑖=1
𝛿𝑖 ∫

𝑡𝑛+1

𝑡𝑛+1−𝑖
(𝑡𝑛+1−𝑖 − 𝑠)𝑘 𝜕

𝑘+1𝑢
𝜕 𝑡𝑘+1 (𝑠)𝑑 𝑠,

(3.8)

where 𝛿𝑖 are some fixed positive constants.
Using Lemma 3.3 and taking the inner product of (3.7) with 𝛥2𝑒𝑛+1 − 𝜏𝑘𝛥2𝑒𝑛 lead to

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝛥 ̄𝑒𝑛+1+𝑖−𝑘, 𝛥 ̄𝑒𝑛+1+𝑗−𝑘) −

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝛥 ̄𝑒𝑛+𝑖−𝑘, 𝛥 ̄𝑒𝑛+𝑗−𝑘)

+ ‖

𝑘
∑

𝑖=0
𝛿𝑖𝛥 ̄𝑒𝑛+1+𝑖−𝑘‖2 + 𝜖4𝛥𝑡‖∇𝛥2𝑒𝑛+1‖2

=(𝛥𝐴𝑘(𝑢𝑛) − 𝛥𝐴𝑘(𝑢̄𝑛), 𝛥 ̄𝑒𝑛+1 − 𝜏𝑘𝛥 ̄𝑒𝑛) − 𝜖4𝛥𝑡(𝛥3𝑒𝑛+1, 𝜏𝑘𝛥2𝑒𝑛)

+ (∇𝑅𝑛
𝑘,−∇𝛥 ̄𝑒𝑛+1 + 𝜏𝑘∇𝛥 ̄𝑒𝑛) + 𝜖2𝛥𝑡

3
∑

𝑖=1
(𝛥𝑄𝑛

𝑖 , 𝛥2𝑒𝑛+1 − 𝜏𝑘𝛥
2𝑒𝑛)

=𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5 + 𝐼6,

(3.9)

where 𝐼4, 𝐼5, 𝐼6 denote respectively the three terms in the summation. Next, we need to derive proper bounds for the terms
(𝑗 = 1,… , 6) such that we can eventually apply the discrete Grönwall Lemma to derive the desired stability. This process is
6

𝑗
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very tedious. For the sake of readability, we move the details to Appendix.
Combining (3.9) (A.1), (A.3), (A.5) and (A.8) derived in the Appendix in (3.9), we have

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝛥 ̄𝑒𝑛+1+𝑖−𝑘, 𝛥 ̄𝑒𝑛+1+𝑗−𝑘) −

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝛥 ̄𝑒𝑛+𝑖−𝑘, 𝛥 ̄𝑒𝑛+𝑗−𝑘) (3.10)

+ ‖

𝑘
∑

𝑖=0
𝛿𝑖𝛥 ̄𝑒𝑛+1+𝑖−𝑘‖2 + 𝜖4𝛥𝑡

2
(‖∇𝛥2𝑒𝑛+1‖2 − 𝜏2𝑘‖∇𝛥

2𝑒𝑛‖2)

≤𝐶 𝐶2𝑘+1
0 𝛥𝑡2𝑘+1 + 𝐶 𝛥𝑡2𝑘 ∫

𝑡𝑛+1

𝑡𝑛+1−𝑘
‖∇ 𝜕𝑘+1𝑢

𝜕 𝑡𝑘+1 (𝑠)‖
2𝑑 𝑠 + 𝐶 𝛥𝑡2𝑘 ∫

𝑡𝑛+1

𝑡𝑛+1−𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4𝑑 𝑠

+ 𝐶 𝛥𝑡 (‖𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝐵𝑘(𝑒𝑛)‖2 + ‖𝛥𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖2 + ‖𝛥2𝐵𝑘(𝑒𝑛)‖2
)

+ 3𝜖2𝛥𝑡‖𝛥2𝑒𝑛+1‖2 + 𝜖2𝛥𝑡
2

(‖∇𝛥 ̄𝑒𝑛+1‖2 + ‖∇𝛥 ̄𝑒𝑛‖2).

Using the interpolation inequality in Lemma 3.1, we have
𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝛥 ̄𝑒𝑛+1+𝑖−𝑘, 𝛥 ̄𝑒𝑛+1+𝑗−𝑘) −

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝛥 ̄𝑒𝑛+𝑖−𝑘, 𝛥 ̄𝑒𝑛+𝑗−𝑘)

+ ‖

𝑘
∑

𝑖=0
𝛿𝑖𝛥 ̄𝑒𝑛+1+𝑖−𝑘‖2 + 𝜖4𝛥𝑡

2
(‖∇𝛥2𝑒𝑛+1‖2 − 𝜏2𝑘‖∇𝛥

2𝑒𝑛‖2) (3.11)

≤𝐶 𝐶2𝑘+1
0 𝛥𝑡2𝑘+1 + 𝐶 𝛥𝑡2𝑘 ∫

𝑡𝑛+1

𝑡𝑛+1−𝑘
‖∇ 𝜕𝑘+1𝑢

𝜕 𝑡𝑘+1 (𝑠)‖
2𝑑 𝑠 + 𝐶 𝛥𝑡2𝑘 ∫

𝑡𝑛+1

𝑡𝑛+1−2𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4𝑑 𝑠

+ 𝐶 𝛥𝑡 (‖𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝐵𝑘(𝑒𝑛)‖2 + ‖𝛥𝐵𝑘(𝑒𝑛)‖2
)

+ 𝜖4𝛥𝑡
2

1 − 𝜏2𝑘
2𝑘 + 1

𝑘
∑

𝑖=0
‖∇𝛥2𝑒𝑛+1−𝑖‖2.

Taking the sum on ‖∇𝛥2𝑒𝑛+1‖2 − 𝜏2𝑘‖∇𝛥
2𝑒𝑛‖2 over the index 𝑛, we derive

𝑚
∑

𝑞=𝑘−1

(

‖∇𝛥2𝑒𝑞+1‖2 − 𝜏2𝑘‖∇𝛥
2𝑒𝑞‖2

)

=
𝑘(1 − 𝜏2𝑘 )
2𝑘 + 1

𝑚
∑

𝑞=𝑘−1
‖∇𝛥2𝑒𝑞+1‖2 +

𝑚
∑

𝑞=𝑘−1
(
𝑘𝜏2𝑘 + 𝑘 + 1

2𝑘 + 1 ‖∇𝛥2𝑒𝑞+1‖2 − 𝜏2𝑘‖∇𝛥
2𝑒𝑞‖2)

≥
𝑘(1 − 𝜏2𝑘 )
2𝑘 + 1

𝑚
∑

𝑞=𝑘−1
‖∇𝛥2𝑒𝑞+1‖2 +

𝑚
∑

𝑞=𝑘−1

1 − 𝜏2𝑘
2𝑘 + 1

𝑘
∑

𝑖=0
‖∇𝛥2𝑒𝑞+1−𝑖‖2.

Then, we can take the sum of (3.11) over 𝑛 from 𝑘 − 1 to 𝑚 to obtain

𝜆𝐺‖𝛥 ̄𝑒𝑚+1‖2 + 𝜖4𝛥𝑡
2

𝑘(1 − 𝜏2𝑘 )
2𝑘 + 1

𝑚
∑

𝑞=0
‖∇𝛥2𝑒𝑞+1‖2

≤
𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝛥 ̄𝑒𝑚+1+𝑖−𝑘, 𝛥 ̄𝑒𝑚+1+𝑗−𝑘) + 𝜖4𝛥𝑡

2
𝑘(1 − 𝜏2𝑘 )
2𝑘 + 1

𝑚
∑

𝑞=0
‖∇𝛥2𝑒𝑞+1‖2

≤ 𝐶 𝛥𝑡
𝑚+1
∑

𝑞=0
‖𝑒𝑞‖2

𝐻2 + 𝐶 𝛥𝑡2𝑘 ∫
𝑇

0
(‖∇ 𝜕𝑘+1𝑢

𝜕 𝑡𝑘+1 (𝑠)‖
2 + ‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4 + 𝐶2𝑘+2

0 )𝑑 𝑠,

(3.12)

where 𝜆𝐺 is the minimum eigenvalue of 𝐺 = (𝑔𝑖𝑗 ).
By using a similar process, we can obtain bounds on ‖∇𝑒𝑚+1‖ and ‖𝑒𝑚+1‖.
Then, taking the inner product of (3.7) with −𝛥 ̄𝑒𝑛+1 + 𝜏𝑘𝛥 ̄𝑒𝑛, we find that

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (∇𝑒𝑛+1+𝑖−𝑘,∇𝑒𝑛+1+𝑗−𝑘) −

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (∇𝑒𝑛+𝑖−𝑘,∇𝑒𝑛+𝑗−𝑘) (3.13)

+ ‖

𝑘
∑

𝑖=0
𝛿𝑖∇𝑒𝑛+1+𝑖−𝑘‖2 + 𝜖4𝛥𝑡‖𝛥2𝑒𝑛+1‖2

=(𝐴𝑘(𝑢𝑛) − 𝐴𝑘(𝑢̄𝑛),−𝛥 ̄𝑒𝑛+1 + 𝜏𝑘𝛥 ̄𝑒𝑛) + 𝜖4𝛥𝑡(𝛥3𝑒𝑛+1, 𝜏𝑘𝛥 ̄𝑒𝑛)
+ (𝑅𝑛

𝑘,−𝛥 ̄𝑒𝑛+1 + 𝜏𝑘𝛥 ̄𝑒𝑛) + 𝜖2𝛥𝑡
(

𝛥(𝑄𝑛
1 +𝑄𝑛

2 +𝑄𝑛
3),−𝛥 ̄𝑒𝑛+1 + 𝜏𝑘𝛥 ̄𝑒𝑛)

≤𝐶 𝐶2𝑘+1
0 𝛥𝑡2𝑘+1 + 𝛥𝑡‖∇𝑒𝑛+1‖2 + 𝛥𝑡‖∇𝑒𝑛‖2 + 𝜖4𝛥𝑡

2
(‖𝛥2𝑒𝑛+1‖2 + 𝜏2𝑘‖𝛥

2𝑒𝑛‖2)

+ 𝐶 𝛥𝑡2𝑘
𝑡𝑛+1

‖∇ 𝜕𝑘+1𝑢 (𝑠)‖2𝑑 𝑠 + 𝛥𝑡‖∇𝑒𝑛+1‖2 + 𝛥𝑡‖∇𝑒𝑛‖2
7
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+ 𝜖2

2
𝛥𝑡

(

‖∇𝑄𝑘
1 + ∇𝑄𝑘

2 + ∇𝑄𝑘
3‖

2 + 2‖∇𝛥 ̄𝑒𝑛+1‖2 + 2‖∇𝛥 ̄𝑒𝑛‖2) .

We can estimate the last term on the right-hand side of (3.13) as follows

𝜖2

2
𝛥𝑡

(

‖∇𝑄𝑘
1 + ∇𝑄𝑘

2 + ∇𝑄𝑘
3‖

2 + 2‖∇𝛥 ̄𝑒𝑛+1‖2 + 2‖∇𝛥 ̄𝑒𝑛‖2) (3.14)

≤3𝜖2
2

𝛥𝑡(‖∇𝑄𝑘
1‖

2 + ‖∇𝑄𝑘
2‖

2 + ‖∇𝑄𝑘
3‖

2) + 𝜖2𝛥𝑡‖∇𝛥 ̄𝑒𝑛+1‖2 + 𝜖2𝛥𝑡‖∇𝛥 ̄𝑒𝑛‖2

≤𝐶 𝛥𝑡 (‖𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝐵𝑘(𝑒𝑛)‖2 + ‖𝛥𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖2
)

+ 𝐶 𝛥𝑡2𝑘 ∫
𝑡𝑛+1

𝑡𝑛+1−2𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻3𝑑 𝑠 + 𝜖2𝛥𝑡‖∇𝛥 ̄𝑒𝑛+1‖2 + 𝜖2𝛥𝑡‖∇𝛥 ̄𝑒𝑛‖2.

Combining (3.13) and (3.14), we have

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (∇𝑒𝑛+1+𝑖−𝑘,∇𝑒𝑛+1+𝑗−𝑘) −

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (∇𝑒𝑛+𝑖−𝑘,∇𝑒𝑛+𝑗−𝑘) (3.15)

+ ‖

𝑘
∑

𝑖=0
𝛿𝑖∇𝑒𝑛+1+𝑖−𝑘‖2 +

𝜖4𝛥𝑡
2

‖𝛥2𝑒𝑛+1‖2

≤𝐶 𝐶2𝑘+1
0 𝛥𝑡2𝑘+1 + 𝛥𝑡‖∇𝑒𝑛+1‖2 + 𝛥𝑡‖∇𝑒𝑛‖2 + 𝜖4𝛥𝑡

2
𝜏2𝑘‖𝛥

2𝑒𝑛‖2

+ 𝐶 𝛥𝑡
𝑘−1
∑

𝑖=0

(

‖𝑒𝑛−𝑖‖2 + ‖∇𝑒𝑛−𝑖‖2
)

+ 𝐶 𝛥𝑡
𝑘
∑

𝑖=0

(

‖𝛥 ̄𝑒𝑛+1−𝑖‖2 + ‖∇𝛥 ̄𝑒𝑛+1−𝑖‖2)

+ 𝐶 𝛥𝑡2𝑘 ∫
𝑡𝑛+1

𝑡𝑛+1−𝑘
‖∇ 𝜕𝑘+1𝑢

𝜕 𝑡𝑘+1 (𝑠)‖
2𝑑 𝑠 + 𝐶 𝛥𝑡2𝑘 ∫

𝑡𝑛+1

𝑡𝑛+1−2𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻3𝑑 𝑠.

Then, an application of the interpolation inequality leads to
‖∇𝛥 ̄𝑒𝑛+1‖ ≤𝐶̄‖𝑒𝑛+1‖1∕3

𝐻1 ‖𝛥
2𝑒𝑛+1‖2∕3,

an application of Young’s inequality leads to

‖∇𝛥 ̄𝑒𝑛+1‖2 ≤5122𝐶̄6

27𝜖8
‖𝑒𝑛+1‖2

𝐻1 +
𝜖4

256
‖𝛥2𝑒𝑛+1‖2

≤𝐶‖𝑒𝑛+1‖2
𝐻1 +

𝜖4

256
‖𝛥2𝑒𝑛+1‖2.

Combining the above inequalities in (3.15), we obtain
𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (∇𝑒𝑛+1+𝑖−𝑘,∇𝑒𝑛+1+𝑗−𝑘) −

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (∇𝑒𝑛+𝑖−𝑘,∇𝑒𝑛+𝑗−𝑘)

+ ‖

𝑘
∑

𝑖=0
𝛿𝑖∇𝑒𝑛+1+𝑖−𝑘‖2 +

𝜖4𝛥𝑡
2

(‖𝛥2𝑒𝑛+1‖2 − 𝜏2𝑘‖𝛥
2𝑒𝑛‖2)

≤𝐶 𝐶2𝑘+1
0 𝛥𝑡2𝑘+1 + 𝐶 𝛥𝑡

2𝑘
∑

𝑖=0

(

‖𝑒𝑛+1−𝑖‖2 + ‖∇𝑒𝑛+1−𝑖‖2
)

+ 𝜖4𝛥𝑡
1 − 𝜏2𝑘

2(2𝑘 + 1)
2𝑘
∑

𝑖=0
‖𝛥2𝑒𝑛+1−𝑖‖2

+ 𝐶 𝛥𝑡2𝑘 ∫
𝑡𝑛+1

𝑡𝑛+1−𝑘
‖∇ 𝜕𝑘+1𝑢

𝜕 𝑡𝑘+1 (𝑠)‖
2𝑑 𝑠 + 𝐶 𝛥𝑡2𝑘 ∫

𝑡𝑛+1

𝑡𝑛+1−2𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻3𝑑 𝑠.

Taking the sum of the above over 𝑛 from 𝑘 − 1 to 𝑚, we obtain

𝜆𝐺‖∇𝑒𝑚+1‖2 ≤
𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (∇𝑒𝑚+1+𝑖−𝑘,∇𝑒𝑚+1+𝑗−𝑘)

≤ 𝐶 𝛥𝑡
𝑚+1
∑

𝑞=0
‖𝑒𝑞‖2

𝐻1 + 𝐶 𝛥𝑡2𝑘 ∫
𝑇

0
(‖∇ 𝜕𝑘+1𝑢

𝜕 𝑡𝑘+1 (𝑠)‖
2 + ‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻3 + 𝐶2𝑘+2

0 )𝑑 𝑠.
(3.16)

Taking the inner product of (3.7) with 𝑒𝑛+1 − 𝜏 𝑒𝑛, we arrive at
8

𝑘
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𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝑒𝑛+1+𝑖−𝑘, ̄𝑒𝑛+1+𝑗−𝑘) −

𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝑒𝑛+𝑖−𝑘, ̄𝑒𝑛+𝑗−𝑘)

+ ‖

𝑘
∑

𝑖=0
𝛿𝑖𝑒

𝑛+1+𝑖−𝑘
‖

2 + 𝜖4𝛥𝑡
2

(‖∇𝛥 ̄𝑒𝑛+1‖2 − 𝜏2𝑘‖∇𝛥 ̄𝑒𝑛‖2)

≤𝐶 𝐶2𝑘+1
0 𝛥𝑡2𝑘+1 + 𝐶 𝛥𝑡

2𝑘
∑

𝑖=0
‖𝑒𝑛+1−𝑖‖2 + 𝜖4𝛥𝑡

1 − 𝜏2𝑘
2(2𝑘 + 1)

2𝑘
∑

𝑖=0
‖∇𝛥 ̄𝑒𝑛+1−𝑖‖2

+ 𝐶 𝛥𝑡2𝑘 ∫
𝑡𝑛+1

𝑡𝑛+1−𝑘
‖

𝜕𝑘+1𝑢
𝜕 𝑡𝑘+1 (𝑠)‖

2𝑑 𝑠 + 𝐶 𝛥𝑡2𝑘 ∫
𝑡𝑛+1

𝑡𝑛+1−2𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻2𝑑 𝑠.

Then taking the sum of above over 𝑛 from 𝑘 − 1 to 𝑚, we have

𝜆𝐺‖𝑒
𝑚+1

‖

2 ≤
𝑘
∑

𝑖,𝑗=1
𝑔𝑖𝑗 (𝑒𝑚+1+𝑖−𝑘, ̄𝑒𝑚+1+𝑗−𝑘)

≤ 𝐶 𝛥𝑡
𝑚+1
∑

𝑞=0
‖𝑒𝑞‖2 + 𝐶 𝛥𝑡2𝑘 ∫

𝑇

0

(

‖

𝜕𝑘+1𝑢
𝜕 𝑡𝑘+1 (𝑠)‖

2 + ‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻2 + 𝐶2𝑘+2

0

)

𝑑 𝑠.
(3.17)

Summing up (3.12), (3.16) and (3.17), then using the discrete Grönwall’s inequality in Lemma 3.2, we have

‖𝑒𝑚+1‖2
𝐻2 + 𝜖4𝛥𝑡

𝑘(1 − 𝜏2𝑘 )
4𝑘 + 1

𝑚
∑

𝑞=0
‖∇𝛥2𝑒𝑞+1‖2

≤𝐶 𝑒𝑥𝑝((1 − 𝐶 𝛥𝑡)−1)𝛥𝑡2𝑘 ∫
𝑇

0
(‖ 𝜕

𝑘+1𝑢
𝜕 𝑡𝑘+1 (𝑠)‖

2
𝐻1 + ‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4 + 𝐶2𝑘+2

0 )𝑑 𝑠

≤𝐶2(1 + 𝐶2𝑘+2
0 )𝛥𝑡2𝑘.

Given that 0 < 𝜖4 𝑘(1−𝜏2𝑘 )
4𝑘+1 < 1, it follows that

‖𝑒𝑛+1‖𝐻2 , (𝛥𝑡
𝑛
∑

𝑞=0
‖∇𝛥2𝑒𝑞+1‖2)1∕2 ≤

√

𝐶2(1 + 𝐶2𝑘+2
0 )𝛥𝑡𝑘, ∀ 0 ≤ 𝑛 ≤ 𝑚. (3.18)

Then, combining (3.5) and (3.18), we obtain the following desired bounds:

‖𝑢̄𝑛+1‖𝐻2 , (𝛥𝑡
𝑛
∑

𝑞=0
‖∇𝛥2𝑢̄𝑞+1‖2)1∕2 ≤ 𝐶̄ , ∀ 0 ≤ 𝑛 ≤ 𝑚. (3.19)

In addition, using the Sobolev embedding theorem, we can derive

|𝑓 (𝑖)(𝑢̄𝑛+1)|𝐿∞ ≤ 𝐶̄ , 𝑖 = 0, 1, 2, 3, ∀ 0 ≤ 𝑛 ≤ 𝑚. (3.20)

Step 2: Estimate for |1 − 𝜉𝑚+1|. Thanks to (2.2b), we can get

𝑒𝑛+1𝑟 − 𝑒𝑛𝑟 = 𝛥𝑡(‖∇𝜇(𝑢(𝑡𝑛+1))‖2 − 𝑟𝑛+1

𝐸(𝑢̄𝑛+1)
‖∇𝜇(𝑢̄𝑛+1)‖2) + 𝑅𝑛

1, (3.21)

where

𝜇 = 𝜖4𝛥2𝑢 − 𝜖2𝑓 ′(𝑢)𝛥𝑢 − 𝜂 𝜖2𝛥𝑢 − 𝜖2𝛥𝑓 (𝑢) + 𝑓 ′(𝑢)𝑓 (𝑢) + 𝜂 𝑓 (𝑢),
and

𝑅𝑛
1 = 𝑟(𝑡𝑛) − 𝑟(𝑡𝑛+1) + 𝛥𝑡𝑟𝑡(𝑡𝑛+1) = ∫

𝑡𝑛+1

𝑡𝑛
(𝑠 − 𝑡𝑛)𝑟𝑡𝑡(𝑠)𝑑 𝑠.

Direct calculation yields

𝑟𝑡𝑡 =∫𝛺
(−𝜖2𝛥𝑢𝑡 + 𝑓 ′(𝑢)𝑢𝑡)2 + (−𝜖2𝛥𝑢 + 𝑓 ′(𝑢))(−𝜖2𝛥𝑢𝑡𝑡 + 𝑓 ′′(𝑢)𝑢2𝑡 + 𝑓 ′(𝑢)𝑢𝑡𝑡)

+ 𝜂 𝜖2(∇𝑢𝑡)2 + 𝜂 𝜖2∇𝑢 ⋅ ∇𝑢𝑡𝑡 + 𝜂 𝑓 ′(𝑢)(𝑢𝑡)2 + 𝜂 𝑓 (𝑢)𝑢𝑡𝑡𝑑𝒙.
We then have

|𝑅𝑛
1| = 𝐶 𝛥𝑡∫

𝑡𝑛+1

𝑡𝑛
|𝑟𝑡𝑡|𝑑 𝑠 ≤ 𝐶 𝛥𝑡∫

𝑡𝑛+1

𝑡𝑛
(‖𝑢𝑡‖2𝐻2 + ‖𝑢𝑡‖𝐻2 + ‖𝑢𝑡𝑡‖𝐻2 )𝑑 𝑠.

For the first term on the right-hand side of (3.21),
|

|

|

|

‖∇𝜇(𝑢(𝑡𝑛+1))‖2 − 𝑟𝑛+1

𝐸(𝑢̄𝑛+1)
‖∇𝜇(𝑢̄𝑛+1)‖2

|

|

|

|

≤‖∇𝜇(𝑢(𝑡𝑛+1))‖2
|

|1 − 𝑟𝑛+1 |

| + 𝑟𝑛+1 |

|‖∇𝜇(𝑢(𝑡𝑛+1))‖2 − ‖∇𝜇(𝑢̄𝑛+1)‖2|| ∶= 𝐾𝑛 +𝐾𝑛.
9

|

|
𝐸(𝑢̄𝑛+1) |

|
𝐸(𝑢̄𝑛+1) | |

1 2
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For 𝐾𝑛
1 and 𝐾𝑛

2 , it follows from (3.6), (3.5), (3.18), (3.19), 𝐸(𝑢) ≥ −𝐿0 + 1 > 0 and Theorem 2.1 that

𝐾𝑛
1 ≤ 𝐶

|

|

|

|

1 − 𝑟𝑛+1

𝐸(𝑢̄𝑛+1)
|

|

|

|

≤ 𝐶
|

|

|

|

|

𝑟(𝑡𝑛+1)
𝐸(𝑢(𝑡𝑛+1))

− 𝑟𝑛+1

𝐸(𝑢(𝑡𝑛+1))

|

|

|

|

|

+
|

|

|

|

𝑟𝑛+1

𝐸(𝑢(𝑡𝑛+1))
− 𝑟𝑛+1

𝐸(𝑢̄𝑛+1)
|

|

|

|

≤ 𝐶(|𝑒𝑛+1𝑟 | + |𝐸(𝑢(𝑡𝑛+1)) − 𝐸(𝑢̄𝑛+1)|),

and
𝐾𝑛

2 ≤ 𝐶‖∇𝜇(𝑢(𝑡𝑛+1)) − ∇𝜇(𝑢̄𝑛+1)‖ (‖∇𝜇(𝑢(𝑡𝑛+1))‖ + ‖∇𝜇(𝑢̄𝑛+1)‖
)

≤ 𝐶𝐶̄(‖∇𝛥2𝑒𝑛+1‖ + ‖∇𝛥 ̄𝑒𝑛+1‖)(1 + ‖∇𝛥2𝑢̄𝑛+1‖)

≤ 𝐶𝐶̄‖∇𝛥2𝑒𝑛+1‖‖∇𝛥2𝑢̄𝑛+1‖ + 𝐶𝐶̄‖∇𝛥 ̄𝑒𝑛+1‖‖∇𝛥2𝑢̄𝑛+1‖ + 𝐶𝐶̄(‖∇𝛥2𝑒𝑛+1‖ + ‖∇𝛥 ̄𝑒𝑛+1‖).

Using the Cauchy–Schwarz inequality, we derive

𝛥𝑡
𝑛+1
∑

𝑞=1
‖∇𝛥2𝑒𝑞‖‖∇𝛥 ̄𝑢𝑞‖ ≤ (𝛥𝑡

𝑛+1
∑

𝑞=1
‖∇𝛥2𝑒𝑞‖2𝛥𝑡

𝑛+1
∑

𝑞=1
‖∇𝛥 ̄𝑢𝑞‖2)1∕2

≤ 𝐶̄
√

𝐶2(1 + 𝐶2𝑘+2
0 )𝛥𝑡𝑘,

𝛥𝑡
𝑛+1
∑

𝑞=1
‖∇𝛥2𝑒𝑞‖‖∇𝛥2𝑢̄𝑞‖ ≤ (𝛥𝑡

𝑛+1
∑

𝑞=1
‖∇𝛥2𝑒𝑞‖2𝛥𝑡

𝑛+1
∑

𝑞=1
‖∇𝛥2𝑢̄𝑞‖2)1∕2

≤ 𝐶̄
√

𝐶2(1 + 𝐶2𝑘+2
0 )𝛥𝑡𝑘.

Next, we have

|𝐸(𝑢(𝑡𝑛+1)) − 𝐸(𝑢̄𝑛+1)|

≤1
2
‖ − 𝜖2𝛥𝑢(𝑡𝑛+1) + 𝑓 (𝑢(𝑡𝑛+1))‖‖𝜖2𝛥 ̄𝑒𝑛+1 − (𝑓 (𝑢̄𝑛+1) − 𝑓 (𝑢(𝑡𝑛+1)))‖

+ 1
2
‖ − 𝜖2𝛥 ̄𝑢𝑛+1 + 𝑓 (𝑢̄𝑛+1)‖‖𝜖2𝛥 ̄𝑒𝑛+1 − (𝑓 (𝑢̄𝑛+1) − 𝑓 (𝑢(𝑡𝑛+1)))‖

+
𝜂 𝜖2
2

(‖∇𝑢(𝑡𝑛+1)‖ + ‖∇𝑢̄𝑛+1‖)‖∇𝑢(𝑡𝑛+1) − ∇𝑢̄𝑛+1‖ + 𝜂‖𝐹 (𝑢(𝑡𝑛+1)) − 𝐹 (𝑢̄𝑛+1)‖

≤𝐶(‖𝛥 ̄𝑒𝑛+1‖ + ‖∇𝑒𝑛+1‖ + ‖𝑒𝑛+1‖).

Taking the sum of (3.21) over 𝑛 from 0 to 𝑚, after combining the above estimates together, we obtain

|𝑒𝑚+1𝑟 | ≤ 𝛥𝑡
𝑚
∑

𝑞=0

|

|

|

|

‖∇𝜇(𝑢(𝑡𝑞+1))‖2 − 𝑟𝑞+1

𝐸(𝑢̄𝑞+1)
‖∇𝜇(𝑢̄𝑞+1)‖2

|

|

|

|

+
𝑚
∑

𝑞=0
|𝑇 𝑞

1 |

≤ 𝐶 𝛥𝑡
𝑚
∑

𝑞=0
|𝑒𝑞+1𝑟 | + 𝐶 𝛥𝑡

𝑚
∑

𝑞=0
‖𝑒𝑞+1‖𝐻2 + 𝐶 𝛥𝑡∫

𝑇

0
(‖𝑢𝑡‖2𝐻2 + ‖𝑢𝑡‖𝐻2 + ‖𝑢𝑡𝑡‖𝐻2 )𝑑 𝑠

≤ 𝐶 𝛥𝑡
𝑚
∑

𝑞=0
|𝑒𝑞+1𝑟 | + 𝐶𝐶̄

√

𝐶2(1 + 𝐶2𝑘+2
0 )𝛥𝑡𝑘 + 𝐶 𝛥𝑡.

Using the Grönwall’s inequality, we obtain

|𝑒𝑚+1𝑟 | ≤ 𝐶 exp((1 − 𝐶 𝛥𝑡)−1)𝛥𝑡(𝐶̄
√

𝐶2(1 + 𝐶2𝑘+2
0 )𝛥𝑡𝑘−1 + 1). (3.22)

Thanks to (3.22), we can define 𝐶0 and finish the proof virtually the same as Step 3 of Theorem 3 in [19] under the condition

𝛥𝑡 ≤ 1
1 + 𝐶𝑘+2

0

, 1 ≤ 𝑘 ≤ 5. (3.23)

Then we have |1 − 𝜉𝑚+1| ≤ 𝐶0𝛥𝑡. This completes the induction process.
Finally, we can obtain ‖𝑒𝑚+1‖2

𝐻2 + ‖𝑒𝑚+1‖2
𝐻2 ≤ 𝐶 𝛥𝑡2𝑘 as follows.

From (3.19) and (2.2d), and noting the result in (3.3), we can conclude that
‖

‖

‖

𝑢𝑚+1 − 𝑢̄𝑚+1‖‖
‖𝐻2 ≤ |

|

|

𝜂𝑚+1𝑘 − 1||
|

‖

‖

‖

𝑢̄𝑚+1‖‖
‖𝐻2 ≤ 𝐶̄ |

|

|

𝜂𝑚+1𝑘 − 1||
|

≤ 𝐶̄ 𝐶𝑘+1
0 𝛥𝑡𝑘+1. (3.24)

Combining (3.24) with the conditions (3.4) and (3.23) on the time step 𝛥𝑡, we derive that
‖

‖

‖

𝑒𝑚+1‖‖
‖

2

𝐻2 ≤ 2 ‖‖
‖

𝑒𝑚+1‖‖
‖

2

𝐻2 + 2 ‖‖
‖

𝑢𝑚+1 − 𝑢̄𝑚+1‖‖
‖

2

𝐻2
(

2(𝑘+1)
)

2𝑘 2 2(𝑘+1) 2(𝑘+1)
10

≤ 2𝐶2 1 + 𝐶0 𝛥𝑡 + 2𝐶̄ 𝐶0 𝛥𝑡 ,
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T

w

a

provided that 𝛥𝑡 < 1
1+2𝐶𝑘+2

0
. This completes the proof. □

Remark 3.2. Note that for the case 𝑘 = 1, we employ 𝜂𝑛+11 = 1 − (1 − 𝜉𝑛+1)3 purely for technical reasons. It is apparent that
𝜂𝑛+11 = 1 − (1 − 𝜉𝑛+1)2 will ensure first-order accuracy.

4. Numerical simulations

In this section, we provide several numerical examples to verify the accuracy and stability of the proposed numerical schemes.
he computational domain is defined as 𝛺 = [0, 𝐿)𝑑 (𝑑 = 2, 3) with periodic boundary conditions. Unless otherwise specified, the

mobility constant is set to  = 1.

4.1. Fully discrete schemes

We observe that at each time step, the scheme (2.2a) reduces to solving the following coupled linear system
𝛼𝑘𝑢̄𝑛+1

𝛥𝑡
−𝛥 ̄𝜇𝑛+1 = 𝑔𝑛1 ,

𝜇̄𝑛+1 + 𝜖2𝛥 ̄𝜔𝑛+1 = 𝑔𝑛2 ,

𝜔̄𝑛+1 + 𝜖2𝛥 ̄𝑢𝑛+1 = 𝑔𝑛3 ,

(4.1)

with either periodic boundary conditions or homogeneous Neumann boundary conditions. In the above 𝑔𝑛𝑖 (𝑖 = 1, 2, 3) are known
functions from the previous steps.

In the case of periodic boundary conditions, we can apply a Fourier-spectral method to the above system with unknowns being
the Fourier-coefficients of the unknown functions so that the Fourier approximation of the above system reduces to a diagonal
system. Thus the scheme (2.2) can be efficiently implemented using a Fourier-spectral method.

On the other hand, in the case of homogeneous Neumann boundary conditions, one can apply a Legendre-Spectral method to
(4.1). Then, the corresponding coupled linear system can also be efficiently solved by using the method presented in [13].

4.2. Accuracy test

We set 𝑑 = 2, 𝐿 = 2𝜋, and assume the exact solution is given by

𝑢(𝑥, 𝑦, 𝑡) = 0.25 cos(𝑥) cos(𝑦)𝑒−𝑡. (4.2)

We use the Fourier-Galerkin method in space with 256 × 256 Fourier modes. Fig. 1 presents the errors at 𝑇 = 1, measured in
the 𝐻2-norm for 𝑢 and the 𝐿∞-norm for |1 − 𝜉| for the FCH equation, i.e., 𝜂 < 0 with  = 0.005, 𝜖 = 1 and 𝜂 = −1. It is evident that
all schemes achieve the expected convergence rate in time. Similar results were observed for 𝜂 ≥ 0. For the sake of brevity, we do
not report them here.

4.3. Phase separation

To simulate the coarsening dynamics, we consider sixth-order Cahn–Hilliard-type Eq. (1.1) in the domain [0, 4𝜋)𝑑 (𝑑 = 2, 3), with
𝜖 = 0.1.

4.3.1. FCH equation
We first consider the 2D FCH equation to model the bilayer network structure. We set 𝜂 = −𝜖2, and use 256 × 256 Fourier modes

ith the following initial condition:

𝑢(𝑥, 𝑦, 𝑡 = 0) = 0.5 + 0.001Rand(𝑥, 𝑦), (4.3)

where Rand(𝑥, 𝑦) denotes the random values in [−1, 1]2.
In Figs. 2(a)–2(b), we present the energy evolution profiles utilizing varying time step sizes for both implicit-explicit (IMEX)

schemes and GSAV schemes. We observe that the GSAV schemes exhibit superior performance over the IMEX scheme, particularly
t larger time steps. Furthermore, the original energy obtained by the GSAV schemes are consistently dissipative, whereas the energy

of IMEX schemes blows up at larger time steps and exhibits an increase at certain times even at smaller time steps.
For subsequent simulations, we shall use the second-order GSAV scheme, unless specified otherwise.
Fig. 3 depicts the dynamics of phase separation with 𝜂 = −𝜖2 and 𝛥𝑡 = 1 × 10−3. The red areas represent the presence of

amphiphilic polymers (𝑢 = −1), while the black regions indicate the solvent phase (𝑢 = +1). The narrow worm-like bilayers merge
to form enclosed regions at around 𝑡 = 10. Some interesting structures like Y-junctions and antennae are captured at 𝑡 = 50 and
𝑡 = 100, respectively. Eventually, the interface elongates and merges to form a network-like structure.

For the 3D case, we still set 𝜂 = −𝜖2, 𝛥𝑡 = 1 × 10−3 with the initial condition
11

𝑢(𝑥, 𝑦, 𝑧, 𝑡 = 0) = 0.5 + 0.001Rand(𝑥, 𝑦, 𝑧), (4.4)
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Fig. 1. Numerical convergence rate of schemes (2.2): convergence rate depicted by the triangle.

where Rand(𝑥, 𝑦, 𝑧) denotes random values in [−1, 1]3. In Fig. 4, we plot three iso-surface diagrams (above) and three slice diagrams
(below) with yellow and black regions correspond to the level sets 𝑢 = 0 and 𝑢 = 0.2, respectively. We observed similar phase
separation behaviors to those observed in the 2D case. These results are consistent with those reported in [28–31].
12
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Fig. 2. Comparison of energy evolution curves for both the IMEX scheme and GSAV-BDF𝑘 scheme with different time steps.

Fig. 3. The phase variable 𝑢 is simulated using the specified initial condition described in (4.3) with 𝜂 = −𝜖2. Snapshots for the simulation of 2D phase separation
for FCH equation are captured at various times 𝑡 = 1, 10, 50, 100, 500, 1000, 3000 and 5000.

4.3.2. CHW equation
In this example, we use the initial condition in (4.3) to simulate the Cahn–Hilliard equation with Willmore-regularization,

i.e., 𝜂 > 0. More precisely, we set 𝜂 = 𝜖 and investigate the coarsening process using 256 × 256 Fourier modes with a time step of
𝛥𝑡 = 1 × 10−3. In Fig. 5, we present snapshots of the phase variable 𝑢 are captured at 𝑡 = 2, 10, 30, 50, 200, 500, 1000 and 5000
which clearly exhibit the coarsening process.

4.4. A benchmark problem

We consider a benchmark problem [32] with the initial condition

𝑢(𝑥, 𝑦, 𝑡 = 0) = 2 exp(sin 𝑥 + sin 𝑦 − 2) + 2.2 exp(− sin 𝑥 − sin 𝑦 − 2) − 1, (4.5)

and the following parameters
13

𝜖 = 0.18, 𝜂 = −0.0324, 𝑑 = 2, 𝐿 = 2𝜋 .
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Fig. 4. Iso-surface diagrams (above) and slice diagrams (below) of 3D phase separation for FCH equation are captured at various times 𝑡 = 10, 50 and 100.

Fig. 5. The phase variable 𝑢 is simulated using the specified initial condition described in (4.3) with 𝜂 = 𝜖. Snapshots for the simulation of coarsening process
for CHW equation are captured at various times 𝑡 = 2, 10, 30, 50, 100, 500, 2000 and 5000.
14
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Fig. 6. The phase variable 𝑢 is simulated using the specified initial condition described in (4.5) with 𝜂 = −0.0324. Snapshots for the simulation of a benchmark
problem are captured at various times 𝑡 = 0, 1, 5, 20, 400, 500, 600 and 1000.

Fig. 7. Evolutions of mass of 𝑢 in the sixth-order Cahn–Hilliard-type equation with different initial conditions.

We use 128 × 128 Fourier modes in space and 𝛥𝑡 = 5 × 10−4. In Fig. 6, we present snapshots of the phase variable to show the
formation of the anticipated network structure in the amphiphilic materials, which is consistent with the results reported in [15,32].
We observe that the mass of 𝑢 is almost conserved, as shown in Fig. 7(a).

4.5. Meandering instability

To simulate the meandering instability, we take the initial condition as follows:

𝑢(𝑥, 𝑦, 𝑡 = 0) =
⎧

⎪

⎨

⎪

⎩

−1, 𝑥 > sin(𝑦) + 2𝜋 + 0.34,
−1, 𝑥 < sin(𝑦) + 2𝜋 − 0.34,
1, otherwise.

(4.6)

The parameters are given by:

𝜖 = 0.1, 𝜂 = −0.2, 𝑑 = 2, 𝐿 = 4𝜋 . (4.7)

Note that the initial condition above is discontinuous, so we use a smoothed approximation as described in [2,16] to serve as
the actual discrete initial condition.

We use 256 × 256 Fourier modes in space and 𝛥𝑡 = 1 × 10−4. Fig. 7(b) demonstrates that the mass of 𝑢 is almost conserved.
The simulation results depicted in Fig. 8 illustrate the stretching of the initial shape and the emergence of meandering instability.
15
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Fig. 8. The phase variable 𝑢 is simulated using the specified initial condition described in (4.6) with 𝜂 = −0.2. Snapshots for the simulation of meandering
instability are captured at various times 𝑡 = 0, 10, 15, 20, 50, 100, 150, 200, 300, 400, 600 and 1000.

Furthermore, it is noticeable that the configuration of the curve gradually evolves in the later times, with a progressive elongation
primarily in the horizontal direction.

4.6. Pearling instability in annuli

In the last example, we consider a more complex FCH model [2] with the free energy

𝐸(𝑢) = ∫𝛺

[

1
2
|

|

|

−𝜖2𝛥𝑢 + 𝑓 (𝑢)||
|

2
+
(

𝜂1
𝜖2

2
|∇𝑢|2 + 𝜂2𝐹 (𝑢)

)]

𝑑𝒙. (4.8)

Here, 𝜂1 < 0 and 𝜂2 ∈ R are two small parameters associated with the properties of amphiphilic materials. It reduces to the original
free energy (1.1) 𝜂1 = 𝜂2.

The 𝐻−1 gradient flow associated with (4.8) is as follows:
⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝑢 = 𝛥𝜇 , 𝑡 > 0, 𝒙 ∈ 𝛺 ,
𝜇 = −𝜖2𝛥𝜔 + 𝑓 ′(𝑢)𝜔 + 𝜂1𝜔 − (𝜂1 − 𝜂2)𝑓 (𝑢), 𝑡 > 0, 𝒙 ∈ 𝛺 ,
𝜔 = −𝜖2𝛥𝑢 + 𝑓 (𝑢), 𝑡 > 0, 𝒙 ∈ 𝛺 ,

(4.9)

where

𝐹 (𝑢) = 1
4
(𝑢 + 1)2(𝑢 − 1)2 + 1

24
(𝑢 + 1)2(𝑢 − 2).

It is clear that the scheme (2.2) can also be applied to the above system.
16
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Fig. 9. The phase variable 𝑢 is simulated using the GSAV-BDF2 scheme, starting from the initial condition specified in (4.10). Snapshots of the simulated phase
variable 𝑢 are captured at various times 𝑡 = 0, 2, 10, 15, 20, 30, 60 and 122.

4.6.1. A ring-shaped ellipse
We consider the discontinuous initial condition

𝑢(𝑥, 𝑦, 𝑡 = 0) =
⎧

⎪

⎨

⎪

⎩

−1, 𝑓 (𝑥, 𝑦) > 𝐿∕4 + 0.2,
−1, 𝑓 (𝑥, 𝑦) < 𝐿∕4 − 0.2,
1, otherwise,

(4.10)

where 𝑓 (𝑥, 𝑦) =
√

(𝑥 − 𝐿∕2)2 + 0.5(𝑦 − 𝐿∕2)2, and use a smoothed approximation as the discrete initial condition.
The parameters are as follows

𝜖 = 0.1, 𝜂1 = −0.145, 𝜂2 = −0.2, 𝑑 = 2, 𝐿 = 4𝜋 . (4.11)

Fig. 9 illustrates the snapshots of the phase variable obtained with 256 × 256 Fourier modes in space and 𝛥𝑡 = 5.0 × 10−4. We
observe that, at time 𝑇 = 2, the pearling bifurcation becomes noticeable, with the initial perturbation appearing at the midpoint of
the minor axis of the elliptical ring, likely due to the relatively thinner bilayer in these areas. These budding pearls merge into a
linear sequence at 𝑇 = 20, leading to a meandering instability.

4.6.2. A ring-shaped circular
We simulate phases undergoing pearling instabilities, with the initial condition being

𝑢(𝑥, 𝑦, 𝑡 = 0) = 2 cosh−1(
√

(𝑥 − 2𝜋)2 + (𝑦 − 2𝜋)2 − 𝜋
𝑞

) − 1, (4.12)

which is a smoothed circular ring with interfacial width 𝑞. We use the parameters in (4.11), 𝜖 = 0.1, 𝜂1 = 𝜂2 = −0.2, 𝑑 = 2,
𝐿 = 4𝜋, and use 256 × 256 Fourier modes in space and 𝛥𝑡 = 1.0 × 10−3. To investigate the effect of varying thickness on the final
numerical results, we select different values for the parameter 𝑞, specifically 𝑞 = 0.14, 0.15, and 0.20. The numerical results can be
found in Figs. 10, 11 and 12. A sharper initial interface leads to rapid interfacial relaxation, which in turn accelerates the onset
of pearling bifurcation caused by instabilities due to high curvature. By comparing these figures, we observe that different shapes
emerge depending on the initial interface width 𝑞, with the pearling bifurcation occurring earlier when the thickness of the initial
interface is smaller. The simulation results are in agreement with the transmission electron microscopy images of diblock copolymers
presented in [33] and align with the numerical simulations shown in [2,34,35].

5. Concluding remarks

We constructed in this paper a class of high-order implicit-explicit (IMEX) schemes based on the GSAV approach for sixth-
order Cahn–Hilliard-type equations which include, as specific examples, Cahn–Hilliard equation with Willmore regularization and
functionalized Cahn–Hilliard equation. The proposed schemes are linear and only require solving one elliptic equation with constant
17
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Fig. 10. The phase variable 𝑢 is simulated using the GSAV-BDF2 scheme, starting from the initial condition specified in (4.12) with 𝑞 = 0.14. Snapshots of the
simulated phase variable 𝑢 are captured at various times 𝑡 = 0, 9, 10, 22, 25, 30, 83 and 100.

Fig. 11. The phase variable 𝑢 is simulated using the GSAV-BDF2 scheme, starting from the initial condition specified in (4.12) with 𝑞 = 0.15. Snapshots of the
simulated phase variable 𝑢 are captured at various times 𝑡 = 0, 13, 15, 24, 30, 34, 70 and 100.

coefficients at each time step, dissipate a modified energy unconditionally, and their numerical solutions are uniformly bounded in
𝑙∞(0, 𝑇 ;𝐻2(𝛺)). We also carried out a rigorous error analysis using a delicate induction process, and derived optimal error estimates
up to fifth-order. To the best of our knowledge, these are the first error estimates for higher-order numerical schemes for sixth-order
Cahn–Hilliard-type equations.

We presented numerical evidence to validate the stability and accuracy of the proposed schemes which are shown to be superior
to the standard IMEX schemes. We also presented ample numerical experiments to simulate various interesting dynamics processes
generated by the Cahn–Hilliard equation with Willmore regularization and functionalized Cahn–Hilliard equation.
18
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Fig. 12. The phase variable 𝑢 is simulated using the GSAV-BDF2 scheme, starting from the initial condition specified in (4.12) with 𝑞 = 0.20. Snapshots of the
simulated phase variable 𝑢 are captured at various times 𝑡 = 0, 49, 50, 51, 55, 60, 70 and 100.
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Appendix. Bounds for the terms 𝑰𝒋 (𝒋 = 𝟏,… , 𝟔) in (3.9)

We now bound the terms 𝐼𝑗 (𝑗 = 1,… , 6) in (3.9) as follows. Firstly, using Hölder inequality, we obtain

𝐼1 ≤
‖𝛥𝐴𝑘(𝑢𝑛) − 𝛥𝐴𝑘(𝑢̄𝑛)‖2

2𝛥𝑡
+ 𝛥𝑡

2
‖𝛥 ̄𝑒𝑛+1 − 𝜏𝑘𝛥 ̄𝑒𝑛‖2

≤𝐶 𝐶2𝑘+2
0 𝛥𝑡2𝑘+1 + 𝛥𝑡(‖𝛥 ̄𝑒𝑛+1‖2 + ‖𝛥 ̄𝑒𝑛‖2),

(A.1)

and
𝐼2 =𝜖4𝛥𝑡(∇𝛥2𝑒𝑛+1, 𝜏𝑘∇𝛥2𝑒𝑛)

≤ 𝜖4𝛥𝑡
2

‖∇𝛥2𝑒𝑛+1‖2 + 𝜖4𝛥𝑡
2

𝜏2𝑘‖∇𝛥
2𝑒𝑛‖2.

(A.2)

It follows from (3.8) that

‖∇𝑅𝑘‖
2 ≤ 𝐶 𝛥𝑡2𝑘+1 ∫

𝑡𝑛+1

𝑡𝑛+1−𝑘
‖∇ 𝜕𝑘+1𝑢

𝜕 𝑡𝑘+1 (𝑠)‖
2𝑑 𝑠,

then we can derive

𝐼3 ≤
𝐶
𝛥𝑡

‖∇𝑅𝑛
𝑘‖

2 + 𝜖2𝛥𝑡
4

‖ − ∇𝛥 ̄𝑒𝑛+1 + 𝜏𝑘∇𝛥 ̄𝑒𝑛‖2

≤𝐶 𝛥𝑡2𝑘 ∫
𝑡𝑛+1

𝑡𝑛+1−𝑘
‖∇ 𝜕𝑘+1𝑢

𝜕 𝑡𝑘+1 (𝑠)‖
2𝑑 𝑠 + 𝜖2𝛥𝑡

2
(‖∇𝛥 ̄𝑒𝑛+1‖2 + ‖∇𝛥 ̄𝑒𝑛‖2).

(A.3)

Next we estimate the terms 𝐼 , 𝐼 and 𝐼 . To this end, we need to bound 𝑄𝑛, 𝑖 = 1, 2, 3.
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By the definition of 𝑄𝑛
1, we have

‖𝛥𝑄𝑛
1‖ ≤‖𝛥2𝑓 (𝐵𝑘(𝑢(𝑡𝑛))) − 𝛥2𝑓 (𝐵𝑘(𝑢̄𝑛))‖ + ‖𝛥2𝑓 (𝑢(𝑡𝑛+1)) − 𝛥2𝑓 (𝐵𝑘(𝑢(𝑡𝑛)))‖.

Using the identities

𝛥𝑓 (𝑢) =𝑓 ′(𝑢)𝛥𝑢 + 𝑓 ′′(𝑢)|∇𝑢|2, (A.4)

and
𝛥2𝑓 (𝑢) =6|∇𝑢|2𝛥𝑢 + 𝑓 ′′(𝑢)(𝛥𝑢)2 + 𝑓 ′(𝑢)𝛥2𝑢 + 2𝑓 ′′(𝑢)∇𝑢 ⋅ ∇𝛥𝑢

+ 6𝛥𝑢|∇𝑢|2 + 𝑓 ′′(𝑢)𝛥|∇𝑢|2 + 12∇𝑢 ⋅ ∇𝛥𝑢,

we can estimate 𝛥𝑄𝑛
1 term by term.

For simplicity, we only estimate the first two terms. Thanks to (3.5) and (3.6), we obtain by Hölder’s inequality and Sobolev
embedding that

6‖|∇𝐵𝑘(𝑢(𝑡𝑛))|
2𝛥𝐵𝑘(𝑢(𝑡𝑛)) − |∇𝐵𝑘(𝑢̄𝑛)|

2𝛥𝐵𝑘(𝑢̄𝑛)‖

=6‖
(

|∇𝐵𝑘(𝑢(𝑡𝑛))| + |∇𝐵𝑘(𝑢̄𝑛)|
)

∇𝐵𝑘(𝑒𝑛)𝛥𝐵𝑘(𝑢(𝑡𝑛))‖ + 6‖|∇𝐵𝑘(𝑢̄𝑛)|
2𝛥𝐵𝑘(𝑒𝑛)‖

≤𝐶‖∇𝐵𝑘(𝑢(𝑡𝑛)) + ∇𝐵𝑘(𝑢̄𝑛)‖𝐿6‖∇𝐵𝑘(𝑒𝑛)‖𝐿6‖𝛥𝐵𝑘(𝑢(𝑡𝑛))‖𝐿6

+ 𝐶‖|∇𝐵𝑘(𝑢̄𝑛)|
2
‖𝐿3‖𝛥𝐵𝑘(𝑒𝑛)‖𝐿6

≤𝐶‖𝐵𝑘(𝑢(𝑡𝑛)) + 𝐵𝑘(𝑢̄𝑛)‖𝐻2‖∇𝐵𝑘(𝑒𝑛)‖𝐻1‖𝐵𝑘(𝑢(𝑡𝑛))‖𝐻3

+ 𝐶‖𝐵𝑘(𝑢̄𝑛)‖𝐻2‖𝛥𝐵𝑘(𝑒𝑛)‖𝐻1

≤𝐶(‖∇𝐵𝑘(𝑒𝑛)‖ + ‖𝛥𝐵𝑘(𝑒𝑛)‖ + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖).

Similarly, we can obtain
‖𝑓 ′′(𝐵𝑘(𝑢(𝑡𝑛)))(𝛥𝐵𝑘(𝑢(𝑡𝑛)))2 − 𝑓 ′′(𝐵𝑘(𝑢̄𝑛))(𝛥𝐵𝑘(𝑢̄𝑛))2‖

=‖𝐵𝑘(𝑒𝑛)(𝛥𝐵𝑘(𝑢(𝑡𝑛)))2‖ + ‖(𝛥𝐵𝑘(𝑢(𝑡𝑛)) + 𝛥𝐵𝑘(𝑢̄𝑛))𝛥𝐵𝑘(𝑒𝑛)‖

≤𝐶‖𝐵𝑘(𝑒𝑛)‖𝐿6‖(𝛥𝐵𝑘(𝑢(𝑡𝑛)))2‖𝐿3 + 𝐶‖(∇𝐵𝑘(𝑢(𝑡𝑛)) + ∇𝐵𝑘(𝑢̄𝑛))∇𝛥𝐵𝑘(𝑒𝑛)‖

≤𝐶‖𝐵𝑘(𝑒𝑛)‖𝐿6‖𝛥𝐵𝑘(𝑢(𝑡𝑛))‖2𝐿6 + 𝐶‖∇𝐵𝑘(𝑢(𝑡𝑛)) + ∇𝐵𝑘(𝑢̄𝑛)‖𝐿6‖∇𝛥𝐵𝑘(𝑒𝑛)‖𝐿3

≤𝐶‖𝐵𝑘(𝑒𝑛)‖𝐻1‖𝛥𝐵𝑘(𝑢(𝑡𝑛))‖2𝐻1 + 𝐶‖∇𝐵𝑘(𝑢(𝑡𝑛)) + ∇𝐵𝑘(𝑢̄𝑛)‖𝐻1‖∇𝛥𝐵𝑘(𝑒𝑛)‖𝐻1

≤𝐶(‖𝐵𝑘(𝑒𝑛)‖ + ‖∇𝐵𝑘(𝑒𝑛)‖ + ‖𝛥𝐵𝑘(𝑒𝑛)‖ + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖ + ‖𝛥2𝐵𝑘(𝑒𝑛)‖).

Other terms in 𝛥𝑄𝑛
1 can be bounded similarly, and we can obtain

‖𝛥𝑄𝑛
1‖ ≤𝐶

(

‖𝐵𝑘(𝑒𝑛)‖ + ‖∇𝐵𝑘(𝑒𝑛)‖ + ‖𝛥𝐵𝑘(𝑒𝑛)‖ + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖ + ‖𝛥2𝐵𝑘(𝑒𝑛)‖
)

+

(

𝛥𝑡∫

𝑡𝑛+1

𝑡𝑛+1−𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4𝑑 𝑠

)1∕2

,

which implies that

𝐼4 ≤
𝜖2

2
𝛥𝑡(‖𝛥𝑄𝑛

1‖
2 + ‖𝛥2𝑒𝑛+1 − 𝜏𝑘𝛥

2𝑒𝑛‖2) (A.5)

≤ 𝜖2

2
𝛥𝑡(‖𝛥𝑄𝑛

1‖
2 + 2‖𝛥2𝑒𝑛+1‖2 + 2‖𝛥2𝑒𝑛‖2)

≤𝐶 𝛥𝑡 (‖𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝐵𝑘(𝑒𝑛)‖2 + ‖𝛥𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖2 + ‖𝛥2𝐵𝑘(𝑒𝑛)‖2
)

+ 𝐶 𝛥𝑡2𝑘 ∫
𝑡𝑛+1

𝑡𝑛+1−𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4𝑑 𝑠 + 𝜖2𝛥𝑡(‖𝛥2𝑒𝑛+1‖2 + ‖𝛥2𝑒𝑛‖2).

For 𝛥𝑄𝑛
2, we have

‖𝛥𝑄𝑛
2‖ ≤ 1

𝜖2
‖𝛥(𝑓 ′(𝐵𝑘(𝑢̄𝑛))𝐵𝑘(𝜔̄𝑛)) − 𝛥(𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))𝐵𝑘(𝜔̄𝑛))‖ (A.6)

+ 1
𝜖2

‖𝛥(𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))𝐵𝑘(𝜔̄𝑛)) − 𝛥(𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))𝐵𝑘(𝜔(𝑡𝑛)))‖

+ 1
𝜖2

‖𝛥(𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))𝐵𝑘(𝜔(𝑡𝑛))) − 𝛥(𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛+1)))𝐵𝑘(𝜔(𝑡𝑛)))‖

+ 1
‖𝛥(𝑓 ′(𝐵 (𝑢(𝑡𝑛+1)))𝐵 (𝜔(𝑡𝑛))) − 𝛥(𝑓 ′(𝑢(𝑡𝑛+1))𝜔(𝑡𝑛+1))‖.
20
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We derive from the third equation of (2.2a) that
1
𝜖2

‖

‖

‖

(

𝛥𝑓 ′(𝐵𝑘(𝑢̄𝑛)) − 𝛥𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))
)

𝐵𝑘(𝜔̄𝑛)‖‖
‖

≤ ‖

‖

∇𝐵𝑘(𝑢̄𝑛)‖‖𝐿6 ‖
‖

∇𝛥𝑓 ′(𝐵𝑘(𝑢̄𝑛)) − 𝛥𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))‖‖𝐿3

+ 1
𝜖2

‖

‖

𝑓 (𝐵𝑘(𝑢̄𝑛))‖‖𝐿∞ ‖

‖

𝛥𝑓 ′(𝐵𝑘(𝑢̄𝑛)) − 𝛥𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))‖‖

≤ ‖

‖

∇𝛥𝑓 ′(𝐵𝑘(𝑢̄𝑛)) − ∇𝛥𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))‖‖𝐻1 + ‖

‖

𝛥𝑓 ′(𝐵𝑘(𝑢̄𝑛)) − 𝛥𝑓 ′(𝐵𝑘(𝑢(𝑡𝑛)))‖‖
≤𝐶(‖𝐵𝑘(𝑒𝑛)‖ + ‖∇𝐵𝑘(𝑒𝑛)‖ + ‖𝛥𝐵𝑘(𝑒𝑛)‖ + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖ + ‖𝛥2𝐵𝑘(𝑒𝑛)‖).

(A.7)

Using (A.4) and the identity

𝛥(𝑓 𝑔) = 𝑓 𝛥𝑔 + 𝑔 𝛥𝑓 + 2∇𝑓 ⋅ ∇𝑔 ,
other terms on the right-hand side of (A.6) can be estimated similarly to obtain

‖𝛥𝑄𝑛
2‖ ≤𝐶

(

‖𝐵𝑘(𝑒𝑛)‖ + ‖∇𝐵𝑘(𝑒𝑛)‖ + ‖𝛥𝐵𝑘(𝑒𝑛)‖ + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖ + ‖𝛥2𝐵𝑘(𝑒𝑛)‖
)

+ 𝐶 𝛥𝑡𝑘−1(𝛥𝑡∫
𝑡𝑛+1

𝑡𝑛+1−𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4𝑑 𝑠)1∕2.

For 𝛥𝑄𝑛
3, we have

‖𝛥𝑄𝑛
3‖ ≤𝜂‖ − 𝛥2𝐵𝑘(𝑒𝑛) + 1

𝜖2
(

𝛥𝑓 (𝐵𝑘(𝑢̄𝑛)) − 𝛥𝑓 (𝐵𝑘(𝑢(𝑡𝑛)))
)

‖

+ 𝜂‖(−𝛥2𝐵𝑘(𝑢(𝑡𝑛)) + 𝛥2𝐵𝑘(𝑢(𝑡𝑛+1)))‖

+
𝜂
𝜖2

‖

(

𝛥𝑓 (𝐵𝑘(𝑢(𝑡𝑛))) − 𝛥𝑓 (𝐵𝑘(𝑢(𝑡𝑛+1)))
)

‖

≤𝜂‖ − 𝛥2𝐵𝑘(𝑒𝑛)‖ +
1
𝜖2

‖𝛥𝑓 (𝐵𝑘(𝑢̄𝑛)) − 𝛥𝑓 (𝐵𝑘(𝑢(𝑡𝑛)))‖

+ 𝜂‖ − 𝛥2𝐵𝑘(𝑢(𝑡𝑛)) + 𝛥2𝐵𝑘(𝑢(𝑡𝑛+1))‖

+
𝜂
𝜖2

‖𝛥𝑓 (𝐵𝑘(𝑢(𝑡𝑛))) − 𝛥𝑓 (𝐵𝑘(𝑢(𝑡𝑛+1)))‖

≤𝐶
(

‖𝐵𝑘(𝑒𝑛)‖ + ‖∇𝐵𝑘(𝑒𝑛)‖ + ‖𝛥𝐵𝑘(𝑒𝑛)‖ + 𝐶‖𝛥2𝐵𝑘(𝑒𝑛)‖
)

+ 𝐶 𝛥𝑡𝑘−1
(

𝛥𝑡∫

𝑡𝑛+1

𝑡𝑛+1−𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4𝑑 𝑠

)1∕2

.

Similarly, we can bound the last two items on the right-hand side of (3.9) to get

𝐼5 + 𝐼6 ≤
𝜖2

2
𝛥𝑡(‖𝛥𝑄𝑛

2‖
2 + ‖𝛥𝑄𝑛

3‖
2) + 2𝜖2𝛥𝑡‖𝛥2𝑒𝑛+1‖2 + 2𝜖2𝛥𝑡‖𝛥2𝑒𝑛‖2

≤ 𝐶 𝛥𝑡 (‖𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝐵𝑘(𝑒𝑛)‖2 + ‖𝛥𝐵𝑘(𝑒𝑛)‖2 + ‖∇𝛥𝐵𝑘(𝑒𝑛)‖2 + ‖𝛥2𝐵𝑘(𝑒𝑛)‖2
)

+ 𝐶 𝛥𝑡2𝑘 ∫
𝑡𝑛+1

𝑡𝑛+1−𝑘
‖

𝜕𝑘𝑢
𝜕 𝑡𝑘 (𝑠)‖

2
𝐻4𝑑 𝑠 + 2𝜖2𝛥𝑡‖𝛥2𝑒𝑛+1‖2 + 2𝜖2𝛥𝑡‖𝛥2𝑒𝑛‖2.

(A.8)

Data availability

Data will be made available on request.
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