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ABSTRACT. We study the mathematical model of thermoacoustic and photoacoustic tomography when the
sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when
trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann
series under the assumptions that all singularities from the support of the source reach the boundary.

1. INTRODUCTION

In this paper, we study the mathematical model of thermoacoustic and photoacoustic tomography for a
sound speed that jumps across a smooth closed surface. The physical setup is the following. A short impulse
of microwaves or light is sent through a patient’s body. The cells react by emitting an acoustic signal that
is being detected on a smooth surface around the patient’s body. Then the problem is to recover the density
of the source of the acoustic waves that can be used to recover the absorption rate of the tissue at any point,
thus creating an image, see e.g., [8, 9, 14, 15, 34, 27]. For more detail, an extensive list of references, and
the recent progress in the mathematical understanding of this problem in the case of a constant or a smooth
sound speed, we refer to [1, 7, 11, 12, 16, 19].

Let ˝ � Rn be a bounded domain with smooth boundary. Let � � ˝ be a smooth closed, orientable,
not necessarily connected surface. Let the sound speed c.x/ > 0 be smooth up to � with a nonzero jump
across it. For x 2 � , and a fixed orientation of � , we introduce the notation

(1.1) cint.x/ D c
ˇ̌
�int

; cext.x/ D c
ˇ̌
�ext

for the limits from the “interior” and from the “exterior” of ˝ n � . Our assumption then is that those limits
are positive as well, and

(1.2) cint.x/ 6D cext.x/; 8x 2 �:

This problem was proposed by Lihong Wang at the meeting in Banff on inverse transport and tomography
in May, 2010 and it arises in brain imaging [35, 36]. In that case, the brain is represented by some domain
˝0 b ˝. Let ˝1 be another domain representing the brain and the skull, so that ˝0 b ˝1 b ˝,
and N̋

1 n ˝0 is the skull, see Figure 1. The measuring devices are then typically placed on a surface
encompassing the skull, modeled by @˝ in our case. Then

cj˝0
< cj˝1n˝0

; cj˝1n˝0
> cj˝n˝1

;

with the speed jumping by about a factor of two inside the skull N̋
1 n ˝0. Another motivation to study this

problem is to model the classical case of a smooth speed in the patient’s body but account for a possible
jump of the speed when the acoustic waves leave the body and enter the liquid surrounding it.
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2 P. STEFANOV AND G. UHLMANN

The mathematical model can then be described as follows. Let u solve the problem

(1.3)

8̂̂̂̂
<̂
ˆ̂̂:

.@2
t � c2�/u D 0 in .0; T / � Rn;

u
ˇ̌
�int

D u
ˇ̌
�ext

;
@u
@�

ˇ̌
�int

D
@u
@�

ˇ̌
�ext

;

ujtD0 D f;

@tujtD0 D 0;

where T > 0 is fixed, uj�int,ext is the limit value (the trace) of u on � when taking the limit from the “exterior”
and from the “interior” of � , respectively, and f is the source that we want to recover. We similarly define
the interior/exterior normal derivatives, and � is the exterior unit (in the Euclidean metric) normal to � .

Assume that f is supported in N̋ , where ˝ � Rn is some smooth bounded domain. The measurements
are modeled by the operator

(1.4) �1f WD ujŒ0;T ��@˝ :

The problem is to reconstruct the unknown f .
We denote more generally by �Œf1; f2� D �1f1 C �2f2 the measurements corresponding to general

Cauchy data Œf1; f2� in (1.3). We will work with f1, f2, supported in some compactK in ˝. In applications,
this corresponds to f1, f2, that are not necessarily zero outside K but are known there. By subtracting the
known part, we arrive at the formulation that we described above. We also assume that c D 1 on Rn n ˝.
We formulate the main results for Cauchy data Œf1; 0� for simplicity of the exposition but we do most of the
preparatory work for general Cauchy data.

The propagation of singularities for the transmission problem is well understood, at least away from
possible gliding rays [10, 30, 20, 21]. When a singularity traveling along a geodesic hits the interface �

transversely, there is a reflected ray carrying a singularity, that reflects at � according to the usual reflection
laws. If the speed on the other side is smaller, there is a transmitted (refracted) ray, as well, at an angle
satisfying Snell’s law, see (4.43). In the opposite case, such a ray exists only if the angle with � is above
some critical one, see (4.44). If that angle is smaller than the critical one, there is no transmitted singularity
on the other side of � . This is known as a full internal reflection. This is what happens in the case of the skull
when a ray hits the skull boundary from inside at a small enough angle, see Figure 1. Therefore, the initial
ray splits into two parts, or does not split; or hits the boundary exactly with an angle equal to the critical
one. The latter case is more delicate, and we refer to section 4 for some discussion on that. Next, consider
the propagation of each branch, if more than one. Each branch may split into two, etc. In the skull example,
a ray coming from the interior of the skull hitting the boundary goes to a region with a smaller speed; and
therefore there is always a transmitted ray, together with the reflected one. Then a single singularity starting
at time t D 0 until time t D T in general propagates along a few branches that look like a directed graph.
This is true at least under the assumption than none of those branches, including possible transmitted ones,
is tangent to the boundary.

If f2 D 0, that is the case we are interested in, singularities from .x0; �0/ start to propagate in the
direction �0 and in the negative one ��0. If none of the branches reaches @˝ at time T or less, a stable
recovery is not possible [25]. In section 2, we study the case where the initial data is supported in some
compact K � ˝ n � and for each .x0; �0/ 2 T �K n 0, each ray through it, or through .x0; ��0/ has a
branch that reaches @˝ transversely at time less than T . The main idea of the proof is to estimate the energy
that each branch carries at high energies. If there is branching into non-tangent to the boundary rays, we
show that a positive portion of the energy is transmitted, and a positive one is reflected, at high energies.
As long as one of these branches reaches the boundary transversely, at a time at which measurements are
still done, we can detect that singularity. If we can do that for all singularities originating from K, we have
stability. This explains condition (2.9) below. Uniqueness follows from unique continuation results.
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FIGURE 1. Propagation of singularities for the transmission problem in the “skull” exam-
ple. The shaded region represents the “skull”, and the speed there is higher than in the
non-shaded part. The dotted curves represent the propagation of the same singularity but
moving with the negative wave speed.

Similarly to [27], assuming (2.9), we also get an explicit converging Neumann series formula for recon-
structing f , see Theorem 2.1. As in the case of a smooth speed considered in [27] the “error” operator K

in (2.10) is a contraction. An essential difference in this case is that K is not necessarily compact. Roughly
speaking, Kf corresponds to that part of the high frequency energy that is still held in ˝ until time T due
to reflected or transmitted signals that have not reached @˝ yet. While the first term only in (2.10) will still
recover all singularities of f , it will not recover their strength, in contrast to the situation in [27], where the
speed is smooth. Thus one can expect somewhat slower convergence in this case.

In a recent paper [23], the authors in collaboration with Qian and Zhao implement numerically the method
developed in [27] and this paper.

Acknowledgment. We would like to thank Lihong Wang for helpful conversations on brain imaging using
thermoacoustic tomography.

2. MAIN RESULT

Let u solve the problem

(2.1)

8̂̂̂̂
<̂
ˆ̂̂:

.@2
t � c2�/u D 0 in .0; T / � Rn;

u
ˇ̌
�int

D u
ˇ̌
�ext

;
@u
@�

ˇ̌
�int

D
@u
@�

ˇ̌
�ext

;

ujtD0 D f1;

@tujtD0 D f2;

where T > 0 is fixed. Compared to (1.3), we allowed f2 to be non-zero but in the main result, we will take
f2 D 0 for simplicity of the exposition. Set f D Œf1; f2�. Assume that f is supported in N̋ , where ˝ � Rn

is some smooth bounded domain. Set

(2.2) �f WD ujŒ0;T ��@˝ :
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The trace �f is well defined in C.0/

�
Œ0; T �I H 1=2.@˝/

�
, where the subscript .0/ indicates that we take the

subspace of functions h so that h D 0 for t D 0. For a discussion of other mapping properties, we refer
to [13], when c has no jumps. By finite speed of propagation, one can reduce the analysis of the mapping
properties of � to that case.

In the thermoacoustic model, f2 D 0. For this reason we set

(2.3) �1f1 WD �Œf1; 0�:

This notation is justified by setting �1;2 to be the components of �, that sends vector functions to scalar
functions, i.e., �f D �1f1 C �2f2. In this paper, we use boldface to denote vector functions or operators
that map scalar or vector functions to vector functions.

The standard back-projection that would serve as some kind of approximation of the actual solution is the
following. We cut off smoothly �1f1 near t D T to satisfy the compatibility conditions in the next step;
and then we solve a backward mixed problem with boundary data the so cut �1f1; and Cauchy data Œ0; 0�

at t D T . As in the case of a smooth speed, see [11, 27], one can show that such a back-projection would
converge to f , as T ! 1 at a rate that depends on f ; and at least at a slow logarithmic one, if one knows
a priori that f 2 H 2, see [2]. If � D @˝0, where ˝0 � ˝ is strictly convex, then in the case that the speed
outside ˝0 is faster than the speed inside (then there is full internal reflection), the convergence would be
no faster than logarithmic, as suggested by the result in [22]. In the opposite case, it is exponential if n is
odd, and polynomial when n is even [3]. Our goal in this work is to fix T however.

In [27], we proposed the following modified back-projection. Given h that will be chosen to be �1f1

later, let v solve

(2.4)

8̂̂<̂
:̂

.@2
t � c2�/v D 0 in .0; T / � ˝;

vjŒ0;T ��@˝ D h;

vjtDT D ';

@tvjtDT D 0;

where � solves the elliptic boundary value problem

(2.5) �' D 0; �j@˝ D h.T; �/:

Then we define the following pseudo-inverse

(2.6) Ah WD Œv.0; �/; vt .0; �/� DW ŒA1h; A2h� in N̋ :

By [17], and by finite speed of propagation [33], one can show that

A W H 1
.0/.Œ0; T � � @˝/ ! H Š H 1

0 .˝/ � L2.˝/

is a continuous map. Note that the mapping properties above allow us to apply A to �f only when f is
compactly supported in ˝ but the theorem below shows that A� extends continuously to the whole H.˝/.
The function A1h with h D �1f1 can be thought of as the “first approximation” of f1. On the other hand,
the proof of Theorem 2.1 below shows that it is not a good approximation, see Remark 2.1.

To explain the idea behind this approach, let us assume for a moment that we knew the Cauchy data
Œu; ut � on fT g � ˝. Then one could simply solve the mixed problem in Œ0; T � � ˝ with that Cauchy data
and boundary data �1f1. Then that solution at t D 0 would recover f . We do not know the Cauchy data
Œu; ut � on fT g � ˝, of course, but we know the trace of u (a priori in H 1 for t fixed) on fT g � @˝. The
trace of ut does not make sense because the latter is only in L2 for t D T . The choice of the Cauchy data
in (2.4) can then be explained by the following. Among all possible Cauchy data that belong to the “shifted
linear space” (the linear space H.˝/ translated by a single element of the set below)

(2.7)
n
g D Œg1; g2� 2 H 1.˝/ ˚ L2.˝/I g1j@˝ D h.T; �/

o
;
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we chose the one that minimizes the energy. The “error” will then be minimized. We refer to Lemma 5.1
and the proof of Theorem 2.1 for more details.

The discussion in the Introduction and in section 4 indicates that the singularities that we are certain to
detect at @˝ lie in the following “non-trapped” set

U D
˚
.x; �/ 2 S�.˝ n � /I there is a path of the “geodesic” issued from either

.x; �/ or .x; ��/ at t D 0 never tangent to � , that is outside N̋ at time t D T
	
:

(2.8)

Actually, U is the maximal open set with the property that a singularity in U “is visible” at Œ0; T � � @˝; and
what happens at the boundary of that set, that includes for example rays tangent to � , will not be important
for our analysis. We emphasize here that “visible” means that some positive fraction of the energy and high
frequencies can be detected as a singularity of the data; and of course there is a fraction that is reflected;
then some trace of it may appear later on @˝, etc.

One special case is the following. Take a compact set K � ˝ n � with smooth boundary, and assume
that

(2.9) S�K � U :

In other words, we require that for any x 2 K and any unit � 2 S�
xK, at least one of the multi-branched

“geodesics” starting from .x; �/, and from .x; ��/, at t D 0 has a path that hits @˝ for time t < T and
satisfies the non-tangency assumption of (2.8). Such a set may not even exist for some speeds c.

Example 1. Let ˝0 � ˝ be two concentric balls, and let c be piecewise constant; more precisely, assume

˝ D B.0; R/; ˝0 D B.0; R0/; 0 < R0 < R;

and let
c D c0 < 1 in ˝0I c D 1 in Rn

n ˝0:

Then such a set K always exist and can be taken to be a ball with the same center and small enough radius.
Indeed, the requirement then is that all rays starting from K hit � at an angle greater than a critical one
�=2 � ˛0, see (4.44). This can be achieved by choosing K D B.0; �/ with � � R0. An elementary
calculation shows that we need to satisfy the inequality �=R0 < sin ˛0 D c0, i.e., it is enough to choose
� < c0 < R0. Then there exists T0 that is easy to compute so that for T > T0, (2.9) holds. On can also add
to K any compact included in fR0 < jxj < Rg. In other words, K can be any compact in ˝ not intersecting
fc0R0 � jxj � R0g, the zone where the trapped rays lie.

If c D c0 > 1 in ˝0, then any compact K in ˝ satisfies (2.9). In that case, there is always a transmitted
ray leaving ˝0.

Example 2. This is a simplified version of the skull model. Let ˝0 � ˝1 � ˝ be balls so that

˝ D B.0; R/; ˝0 D B.0; R0/; ˝1 D B.0; R1/ 0 < R0 < R1 < R;

Assume that
cj˝0

D c0; cj˝1n˝0
D c1; cjRnn˝1

D 1

with some constants c0, c1 so that c0 < c1, c1 > 1. Here, c0 models the acoustic speed in the brain, c1 is the
speed in the skull, and 1 is the acoustic speed in the liquid outside the head. If for a moment we consider ˝0

and ˝1 only, we have the configuration of the previous example. If K D B.0; �/ with � < .c0=c1/R0, then
K satisfies (2.9) with an appropriate T . Now, since c1 > 1, rays that hit @˝1 always have a transmitted part
outside ˝1, and therefore (2.9) is still satisfied in ˝. Rays originating outside ˝1 are not trapped, therefore,
more generally, K can be any compact in ˝ n fc0R0=c1 � jxj � R0g.

Let ˘K W HD.˝/ ! HD.K/ be the orthogonal projection of elements of the former space to the latter
(considered as a subspace of HD.˝/). It is easy to check that ˘Kf D f jK � P@K.f j@K/, where P@K is
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the Poisson operator of harmonic extension in K, see also Lemma 5.1. Let 1K be the restriction of functions
defined on ˝, to K. Then ˘Kf D ˘Kf1 C 1Kf2 is the orthogonal projection of H.˝/ to H.K/, similarly
to (2.5).

Our main result is the following.

Theorem 2.1. Let K satisfy (2.9). Then ˘KA1�1 D Id � K in HD.K/, with kKkHD.K/ < 1. In particular,
Id � K is invertible on HD.K/, and �1 restricted to HD.K/ has an explicit left inverse of the form

(2.10) f D

1X
mD0

Km˘KA1h; h D �1f:

Remark 2.1. As discussed in the Introduction, K is not a compact operator as in the case of smooth sound
speed. It follows from the proof of the theorem that the least upper bound of its essential spectrum (always
less that 1) corresponds to the maximal portion of the high-frequency energy that is still held in ˝ at time
t D T .

Remark 2.2. Compared to [27, Theorem 1], there is a slight improvement in the theorem above; we reduce
the lower bound of T by a factor of 2. Indeed, the proof also works in the case when c is smooth everywhere.
In [27, Theorem 1], we assumed T > T .˝/, where the latter is the length of the longest geodesic in N̋ . In
particular, T .˝/ is the diameter of N̋ , if the metric c�2dx2 is simple, see [26]. In the theorem above, T has
to be larger than the “radius” of N̋ , see (2.8). Therefore, if T > T .˝/=2, for any .x; �/ 2 S˝, at least one
of the geodesics 
x;� and 
x;�� would exit N̋ at time T , hence (2.8) holds. Then K is still a contraction but
not a compact operator anymore in general when T < T .˝/, even when c is smooth. Thus one can expect
a slower convergence of (2.10) if T .˝/=2 < T < T .˝/.

Remark 2.3. Consider the case now where K does not satisfy (2.9). If there is an open set of singularities
that does not reach @˝, a stable recovery is impossible [25]. In either case however, a truncated version
of the series (2.10) would provide an approximate parametrix that would recover the visible singularities,
i.e., those in U . By an approximate parametrix we mean a pseudo-differential operator elliptic in U with a
principal symbol converging to 1 in any compact in that set as the number of the terms in (2.10) increases.
This shows that roughly speaking, if a recovery of the singularities is the primary goal, then only those in U
can be recovered in a “stable way”, and (2.10) works in that case as well, without the assumption (2.9).

3. PRELIMINARIES

Notice first that c2� is formally self-adjoint w.r.t. the measure c�2dx. Given a domain U , and a function
f D Œf1; f2�, define the energy

EU .f/ D

Z
U

�
jrxf1j

2
C c�2

jf2j
2
�

dx:

Given a scalar function u.t; x/, we also set u D Œu; ut �; and then

EU .u.t// D

Z
U

�
jrxuj

2
C c�2

jut j
2
�

dx:

Here and below we use the notation u.t/ D u.t; �/. We define the energy space H.U / as the completion of
C 1

0
.U / � C 1

0
.U / under the energy norm

(3.1) kfk2
H.U / D EU .f/ D

Z
U

�
jrxf1j

2
C c�2

jf2j
2
�

dx:
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In particular, we define the space HD.U / to be the completion of C 1
0

.U / under the Dirichlet norm

(3.2) kf k
2
HD.U / D

Z
U

jrxuj
2 dx:

The energy norm is topologically equivalent to the same norm with c D 1. It is easy to see that HD.U / �

H 1.U /, if U is bounded with smooth boundary, therefore, HD.U / is topologically equivalent to H 1
0

.U /.
If U D Rn, this is true for n � 3 only [18]. By finite speed of propagation, the solution with compactly
supported Cauchy data always stays in H 1 even when n D 2. This norm defines the energy space

H.U / D HD.U / ˚ L2.U /:

Here and below, L2.U / D L2.U I c�2dx/. Note also that

(3.3) kf k
2
HD.U / D .�c2�f; f /L2 :

The wave equation then can be written down as the system

(3.4) ut D Pu; P D

�
0 I

c2� 0

�
;

where u D Œu; ut � belongs to the energy space H.

Proposition 3.1. Let U be an open subset of Rn with smooth boundary. Then the operator P with domain
D.P/ D ff 2 H.U /I f2 2 HD.U /; �f1 2 L2.U /g is a unbounded skew-selfadjoint operator on H.U / if
c 2 L1, and c�1 2 L1.

Proof. Clearly, P is correctly defined on D.P/, and the latter is dense in H.U /. We will show first that
P� � �P, i.e., that D.P�/ � D.P/ and P� D �P on D.P/. Let f, g be in D.P/. Then

(3.5) .Pf; g/H.U / D

Z
U

.rf2 � r Ng1 � rf1 � r Ng2/ dx:

This follows by integration by parts that can be easily justified by approximating g with smooth functions,
see also [18, Theorem V.1.2]. Replace f by and Nf, and g by Ng to get

.Pf; g/H.U / D �.f; Pg/H.U /; 8f; g 2 D.P/:

We will show next that P� � �P. For that, in view of what we already proved, it is enough to show that
D.P�/ D D.P/. By definition, g 2 D.P�/ if and only if there exists h 2 H.U / so that

.Pf; g/H.U / D .f; h/H.U /; 8f 2 D.P/;

see e.g., [24, ~8.1]. This equality can also be written asZ
U

.rf2 � r Ng1 C .�f1/ Ng2/ dx D

Z
U

�
rf1 � r Nh1 C c�2f2

Nh2

�
dx:

Note that the l.h.s. is independent of c. Set h] D Œh1; c�2h2�. It belongs to H if and only if 〈 does. We
therefore reduced the problem D.P�/ D D.P/ to its partial case when c D 1. In that case, this statement
is well known, see e.g., [18, Theorem V.1.2]. In other words, such h] 2 H1.U / exists, and equals �P1g,
where H1, P1 correspond to c D 1, if and only if g 2 D.P1/ D D.P/. Then we also get that h 2 H.U /

exists (and, of course, equals �Pf). �

By Stone’s theorem, P is a generator of a strongly continuous group etP of unitary operators on H.U /

that leaves D.P/ invariant. For any f 2 D.P/, we have d
dt

etPf D PetPf. In particular, for the first component
u.t; x/ of etPf, we have that ut t .t; �/ is a continuous function of t with values in L2.U /; the same holds for
c2.�/�u.t; �/, and ut t D c2�u.
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Remark 3.1. An alternative proof of the proposition is to use well-posedness results in [33], for example,
to show that the solution is given by a strongly continuous unitary group; and deduce from there that its
generator must be skew-selfadjoint.

For f 2 D.P/, the following transmission conditions hold for f1

(3.6) f1

ˇ̌
�int

D f1

ˇ̌
�ext

;
@f1

@�

ˇ̌̌
�int

D
@f1

@�

ˇ̌̌
�ext

;

that just reflects the fact that f1 is in H 2 locally.

4. GEOMETRIC OPTICS

4.1. A parametrix of the Cauchy problem with data at t D 0. We start with a standard geometric
optics construction. We assume first that c is smooth in the region where we construct the parametrix. Fix
.x0; �0/ 2 T �Rn n 0. We identify vectors and covectors away from � by the metric c�2dx2. Let u be a
solution of the wave equation with initial data Œu; ut � D Œf1; f2�, with f D Œf1; f2� having a wave front set
in some small conic neighborhood of .x0; �0/.

In a neighborhood of .0; x0/, the solution to (2.1) is given by

(4.1) u.t; x/ D .2�/�n
X

�D˙

Z
ei�� .t;x;�/

�
a1;� .x; �; t/ Of1.�/ C j�j

�1a2;� .x; �; t/ Of2.�/
�

d�;

modulo smooth terms. Here the phase functions �˙ are positively homogeneous of order 1 in � and solve
the eikonal equations

(4.2) ˙@t�˙ C c.x/jrx�˙j D 0; �˙jtD0 D x � �;

while aj ;˙ are classical amplitudes of order 0 solving the corresponding transport equations along bichar-
acteristics issued from some conic neighborhood of .x; ˙�/ for all .x; �/ 2 WF.f/, see [4, p. 128] or [32,
eqn. (VI.1.50)]. In particular, aj ;˙ satisfy

a1;C C a1;� D 1; a2;C C a2;� D 0 for t D 0:

Since @t�˙ D �c.x/j�j for t D 0, and ut D f2 for t D 0, we also see that for the principal terms a
.0/
j ;˙ of

aj ;˙ �
P

k�0 a
.�k/
j ;˙ we have

a
.0/
1;C

D a
.0/
1;�

; ic.x/.a
.1/
2;�

� a
.1/
2;C

/ D 1 for t D 0:

Therefore,

(4.3) a
.0/
1;C

D a
.0/
1;�

D
1

2
; a

.1/
2;C

D �a
.1/
2;�

D
i

2c.x/
for t D 0:

Note that if c D 1, then �˙ D x � � � t j�j, and a1;C D a1;� D 1=2, a2;C D �a2;� D i=2.
The principal terms a

.0/
j ;˙ satisfy the homogeneous transport equations

(4.4)
�
.@t�˙/@t � c2

rx�˙ � rx C C˙

�
a

.0/
j ;˙ D 0

with initial conditions given by (4.3), where

2C˙ D .@2
t � c2�/�˙;

see also [32, eqn. (VI.1.49)].
By the stationary phase method, for � D C, singularities starting from .x; �/ 2 WF.f/ propagate along

geodesics in the phase space issued from .x; �/, i.e., they stay on the curve .
x;�.t/; P
x;�.t//; and from
.x; ��/, for � D �, i.e., they stay on the curve .
x;��.t/; P
x;��.t//. This is consistent with the general
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propagation of singularities theory for the wave equation because the principal symbol ��2 C c2j�j2 of the
wave operator has two roots � D ˙cj�j.

The construction is valid as long as the eikonal equations are solvable, i.e., for jt j small enough, at least.
We call the corresponding parametrices in (4.1) uC and u�. It is well known that uC C u� represents the
solution of (2.1) up to a smoothing operator applied to f.

4.2. Projections to the positive and the negative wave speeds. The zeros of the principal symbol of
the wave operator, in regions where c is smooth, are given by � D ˙c.x/j�j, that we call wave speeds.
We constructed above parametrices u˙ for the corresponding solutions. We will present here a functional
analysis point of view that allows us to project the initial data f to data ˘˙f, so that, up to smoothing
operators, u˙ corresponds to initial data ˘˙f.

Assume that c.x/ is extended from the maximal connected component of Rn n � containing x0 to the
whole Rn in a smooth way so that 0 < 1=C � c.x/ � C . Let

(4.5) Q D .�c2�/1=2;

where the operator in the parentheses is the natural self-adjoint extension of �c2� to L2.Rn; c�2dx/, and
the square root exists by the functional calculus. Moreover, Q is an elliptic 	DO of order 1 in any open set;
and let Q�1 denote a fixed parametrix.

It is well known that the solution to (2.1) can be written as

(4.6) u D cos.tQ/f1 C
sin.tQ/

Q
f2;

and the latter operator is defined by the functional calculus as �.t; Q/ with �.t; �/ D sin.t �/=� 2 C 1. Based
on that, we can write

(4.7) etP
D eitQ˘C C e�itQ˘�;

where

(4.8) ˘C D
1

2

�
1 �iQ�1

iQ 1

�
; ˘� D

1

2

�
1 iQ�1

�iQ 1

�
:

It is straightforward to see that ˘˙ are orthogonal projections inH, up to errors of smoothing type. Then
given f 2 H supported on ˝, one has u˙ D etPf˙, with f˙ WD ˘˙f.

4.3. Analysis at the boundary. We will analyze what happens when the geodesic .x0; �0/ issued from
.x0; �0/, x0 62 � , hits � for first time, under some assumptions. Let the open sets ˝int, ˝ext, be the
“interior” and the “exterior” part of ˝ near x0, according to the orientation of � . They only need to be
defined near the first contact with � . Let us assume that this geodesic hits � from ˝int. We will construct
here a microlocal representation of the reflected and the transmitted waves near the boundary.

Extend cj˝int in a smooth way in a small neighborhood on the other side of � , and let uC be the solution
described above, defined in some neighborhood of that geodesic segment. Since we are only going to use
uC in the microlocal construction described below, and we will need only the trace of uC on RC � � near
the first contact of the bicharacteristic from .x0; �0/ with � , the particular extension of c would not affect
the microlocal expansion but may affect the smoothing part.

Set

(4.9) h WD uCjR�� :

Let .t1; x1/ 2 RC � � be the point where the geodesic from 
x0;�0 hits � for the first time, see Figure 2.
We assume that such t1 exists. Let �1 be the tangent covector to that geodesic at .t1; x1/. Assume that �0

is unit covector in the metric c�2dx2, then so is �1 (in the metric c�2
int dx2), i.e., cintj�j D 1, where j�j is the
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Euclidean norm. Assume that �1 is transversal to � . In view of condition (2.9), this is the case that we need
to study.

Standard microlocal arguments show, see [27, Proposition 3] for details, that the map Œf1; f2� 7! h is an
elliptic Fourier Integral Operator (FIO) with a canonical relation that is locally a canonical graph described
in [27, Proposition 3]. That diffeomorphism maps .x0; �0/ into .t1; x1; 1; .�1/0/, where the prime stands
for the tangential projection onto T �� ; and that maps extends as a positively homogeneous one of order
one w.r.t. the dual variable. In particular, the dual variable � to t stays positive. In fact, WF.u/ is in the
characteristic set �2 � c2.x/j�j2 D 0, and .x; �/ belongs to some small neighborhood of .x1; �1/. The
wave front set WF.h/ is given by .x; � 0/ 2 T �� , .x; �/ 2 WF.u/, where � 0 is the tangential projection of
� to the boundary. Then .t; x; �; � 0/ is the image of some . Qx; Q�/ close to .x0; �0/ under the canonical map
above. Here . Qx; Q�/ is such that the x-projection x.s/ of the bicharacteristic from it hits � for the first time
at time for the value of s given by sc. Qx/ D t . Since �2 � c2

int.x/j�j2 D 0, for the projection � 0 we have
�2 � c2

int.x/j� 0j2 > 0, where .x; � 0/ 2 T �� , and j� 0j is the norm of the covector � 0 in the metric on �

induced by the Euclidean one.
The microlocal regions of T �.R � � / 3 .t; x; �; � 0/ with respect to the sound speed cint, i.e., in N̋ int, are

defined as follows:
hyperbolic region: cint.x/j� 0j < � ,
glancing manifold: cint.x/j� 0j D � ,
elliptic region: cint.x/j� 0j > � .

One has a similar classification of T �� with respect to the sound speed cext. A ray that hits � transversely,
coming from ˝int, has a tangential projection on T �.R � � / in the hyperbolic region relative to cint. If
cint < cext, that projection may belong to any of the three microlocal regions w.r.t. the speed cint. If cint > cext,
then that projection is always in the hyperbolic region for cext. When we have a ray that hits � from ˝ext,
then those two cases are reversed.

4.4. The reflected and the transmitted waves. We will analyze the case where .�1/0 belongs to the hyper-
bolic region with respect to both cint and cext, i.e., we will work with � 0 in a neighborhood of .�1/0 satisfying

(4.10) c�2
int �2

� j� 0
j
2 > 0; c�2

ext �2
� j� 0

j
2 > 0:

The analysis also applies to the case of a ray coming from ˝ext, under the same assumption. We will confirm
below in this setting the well known fact that under that condition, such a ray splits into a reflected ray with
the same tangential component of the velocity that returns to the interior ˝int, and a transmitted one, again
with the same tangential component of the velocity, that propagates in ˝ext. We will also compute the
amplitudes and the energy at high frequencies of the corresponding asymptotic solutions.

Choose local coordinates on � that we denote by x0, and a normal coordinate xn to � so that xn > 0

in ˝ext, and jxnj is the Euclidean distance to � ; then x D .x0; xn/. We will express the solution uC in
R � N̋ int that we defined above, as well as a reflected solution uR in the same set; and a transmitted one uT

in R � N̋ ext, up to smoothing terms in the form

(4.11) u� D .2�/�n

Z
ei'� .t;x;�;�0/b� .t; x; �; � 0/ Oh.�; � 0/ d� d� 0; � D C; R; T;

where Oh WD
R

R�Rn�1 e�i.�t�Cx0��0/h.t; x0/dt dx0. We chose to alter the sign of � so that if c D 1, then the
phase function in (4.11) would equal 'C, i.e., then 'C D �t� C x � �. The three phase functions 'C, 'R,
'T solve the eikonal equation

(4.12) @t'� C c.x/jrx'� j D 0; '� jxnD0 D �t� C x0
� � 0:

The right choice of the sign in front of @t'C, see (4.2), is the positive one because @t'C D �� < 0 for
xn D 0, and that derivative must remain negative near the boundary as well. We see below that 'R;T have
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the same boundary values on xn D 0, therefore they satisfy the same eikonal equation, with the same choice
of the sign.

Let now h be a compactly supported distribution on R � � with WF.h/ in a small conic neighborhood of
.t1; x1; 1; .�1/0/. We will take h as in (4.9) eventually, with uC the solution corresponding to initial data f at
t D 0 but in what follows, h is arbitrary as long as WF.h/ has that property, and uC is determined through
h. We now look for a parametrix

(4.13) Qu D uC C uR C uT

near .t1; x1/ with uC, uR, uT of the type (4.11), satisfying the wave equation and (4.9). We use the notation
for uC now for a parametrix in ˝int having singularities that come from the past and hit � ; i.e., for an out-
going solution. The subscript C is there to remind us that this is related to the positive sound speed c.x/j�j.
Next, uR is a solution with singularities that are obtained form those of uC by reflection; they propagate
back to ˝int. It is an outgoing solution in ˝int. And finally, uT is a solution in ˝ext with singularities that
go away from � as time increases; hence it is outgoing there. To satisfy the first transmission condition in
(3.6), we need to have

(4.14) 'T D 'R D 'C D �t� C x � � 0 for xn
D 0;

that explains the same boundary condition in (4.12), and

(4.15) 1 C bR D bT for xn
D 0:

In particular, for the leading terms of the amplitudes we get

(4.16) b
.0/
T

� b
.0/
R

D 1 for xn
D 0:

To satisfy the second transmission condition, we require

(4.17) i
@'C

@xn
C

@bC

@xn
C i

@'R

@xn
bR C

@bR

@xn
D i

@'T

@xn
bT C

@bT

@xn
for xn

D 0:

Expanding this in a series of homogeneous in .�; �/ terms, we get series of initial conditions for the transport
equations that follow. Comparing the leading order terms only, we get

(4.18)
@'T

@xn
b

.0/
T

�
@'R

@xn
b

.0/
R

D
@'C

@xn
for xn

D 0:

The linear system (4.16), (4.18) for b
.0/
R

jxnD0, b
.0/
T

jxnD0 has determinant

(4.19) �

�
@'T

@xn
�

@'R

@xn

� ˇ̌̌̌
xnD0

:

Provided that this determinant is non-zero near x1, we can solve for b
.0/
R

jxnD0, b
.0/
T

jxnD0. Moreover, the

determination of each subsequent term b
.�j/
R

jxnD0, b
.�j/
T

jxnD0 in the asymptotic expansion of bRjxnD0,
bT jxnD0 can be found by (4.17) by solving a linear system with the same (non-zero) determinant.

4.5. Solving the eikonal equations. As it is well known, the eikonal equation (4.12) in any fixed side of
R �� , near .t1; x1/, has two solutions. They are determined by a choice of the sign of the normal derivative
on R � � and the boundary condition. We will make the choice of the signs according to the desired
properties for the singularities of uC, uR, uT . Let rx0 denote the tangential gradient on � . By (4.14),

(4.20) rx0'T D rx0'R D rx0'C D � 0; @t'T D @t'R D @t'C D �� for xn
D 0:

Using the eikonal equation (4.12) and the boundary condition there, we get

(4.21)
@'C

@t
D ��;

@'C

@xn
D

q
c�2

int �2 � j� 0j2 for xn
D 0:
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(τ,ξ  )R

(τ,ξ  )1

(τ,ξ  )T

(τ,ξ  )0

(0,ξ  ) 0

(t , x )1 1

ξ'

x  1

ξT

ξ1

ξR

x  0

ξ0

∂Ω

∂Ω

Γ

t

t=t2

(t=0, x  ) 0
Γ

FIGURE 2. The reflected and the transmitted rays. Left: in the x space. Right: in the .t; x/ space.

We made a sign choice for the square root here based on the required property of uC described above. This
shows in particular, that the map h 7! @uC=@t (that is just d=dt ), and the interior incoming Dirichlet to
Neumann map

Nint,in W h 7!
@uC

@�

ˇ̌̌
R��

are locally 	DOs of order 1 with principal symbols given by �i� , and

(4.22) �p.Nint,in/ D i
@'C

@xn
D i

q
c�2

int �2 � j� 0j2:

The notion “interior incoming” is related to the fact that locally, near .t1; x1/, we are solving a mixed
problem in R � ˝int with lateral boundary value h and zero Cauchy data for t � 0.

Consider 'R next. The reflected phase 'R solves the same eikonal equation, with the same boundary
condition, as 'C. By the eikonal equation (4.12), we must have

(4.23)
@'R

@xn
D ˙

@'C

@xn
for xn

D 0:

The “C” choice will give us the solution 'C for 'R. We chose the negative sign, that uniquely determines a
solution locally, that we call 'R, i.e.,

(4.24)
@'R

@xn
D �

@'C

@xn
for xn

D 0:

Therefore, r'R on the boundary is obtained from r'C by inverting the sign of the normal derivative. This
corresponds to the usual law of reflection. Therefore,

(4.25)
@'R

@t
D ��;

@'R

@xn
D �

q
c�2

int �2 � j� 0j2 for xn
D 0:
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In particular, @uR=@xnjR�� can be obtained from uRjR�� , that we still need to determine, via the interior
outgoing Dirichlet-to-Neumann map

Nint,out W uR

ˇ̌̌
R��

7�!
@uR

@xn

ˇ̌̌
R��

that is locally a first order 	DO with principal symbol

(4.26) �p.Nint,out/ D i
@'R

@t
D �i

q
c�2

int �2 � j� 0j2:

To construct 'T , we work in N̋ ext. We define 'T as the solution of (4.12) with the following choice of a
normal derivative. This time 'T and 'C solve the eikonal equation at different sides of � , and c has a jump
at � . By (4.20),

(4.27) c2
ext

�
j� 0

j
2

C

ˇ̌̌@'T

@xn

ˇ̌̌2�
D �2 for xn

D 0:

We solve this equation for j@'T =@xnj2. Under the assumption (4.10), this solution is positive, therefore we
can solve for @'T =@xn to get

(4.28)
@'T

@xn
D

q
c�2

ext �2 � j� 0j2 for xn
D 0:

The positive sign of the square root is determined by the requirement the singularity to be outgoing. In
particular, we get that the exterior outgoing Dirichlet-to Neumann map

Next,out W uT

ˇ̌̌
R��

7�!
@uT

@xn

ˇ̌̌
R��

has principal symbol

(4.29) �p.Next,out/ D i
@'T

@xn
D i

q
c�2

ext �2 � j� 0j2:

For future reference, we note that the following inequality holds

(4.30) 0 �
@'T

@xn
� 


@'C

@xn
I 
 WD max

�

cint

cext
< 1:

4.6. Amplitude and Energy Calculations. By (4.25), (4.28), the determinant (4.19) is negative. Solving
(4.16) and (4.18) then yields

(4.31) b
.0/
T

D
2@'C=@xn

@'C=@xn C @'T =@xn
; b

.0/
R

D
@'C=@xn � @'T =@xn

@'C=@xn C @'T =@xn
for xn

D 0:

As explained below (4.19), we can get initial conditions for the subsequent transport equations, and then
solve those transport equation. By (4.14), the maps

(4.32) PR W h 7! uRjR�� ; PT W h 7! uT jR��

are 	DOs of order 0 with principal symbols equal to b
.0/
R

, b
.0/
T

restricted to R � � , see (4.31). We recall
(4.9) as well.

We estimate next the amount of energy that is transmitted in ˝ext. We will do it only based on the
principal term in our parametrix. That corresponds to an estimate of the solution operator corresponding to
transmission, up to compact operators, as we show below.

A quick look at (4.31), see also (4.16) shows that b
.0/
T

> 1. This may look strange because we should
have only a fraction of the energy transmitted, and the rest is reflected. There is no contradiction however
because the energy is not proportional to the amplitude.
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Let u solve .@2
t � c2�/u D 0 in the bounded domain U with smooth boundary for t 0 � t � t 00 with some

t 0 < t 00. A direct calculation yields

(4.33) EU .u.t 00// D EU .u.t 0// C 2<

Z
Œt 0;t 00��@U

ut
@ Nu

@�
dt dS:

We will use this to estimate the energy of uT in ˝ext. Since the wave front set of uT is contained in some
small neighborhood of the transmitted bicharacteristic, we have smooth data for t D 0. Therefore, if t2 > t1
is fixed closed enough to t1, we can apply (4.33) to a large ball minus ˝int to get that modulo a compact
operator applied to h,

(4.34) E˝ext.uT .t2// Š 2<

Z
Œ0;t2���

@uT

@t

@ NuT

@�
dt dS:

Therefore,

(4.35) E˝ext
.uT .t2// Š 2<.PtuT ; Next,outuT / D <.2P�

T N �
ext,outPtPT h; h/;

where .�; �/ is the inner product in R � Rn�1, and Pt D d=dt .
Apply similar arguments to uC in ˝int. Since the bicharacteristics leave ˝int, we have modulo smoother

terms

(4.36) 0 Š E˝int.uC.0// C 2<

Z
Œ0;t2���

@uC

@t

@ NuC

@�
dt dS:

Similarly we get, see again (4.32),

(4.37) E˝int.uC.0// Š �2<.Pth; Nint,inh/ D <.2N �
int,inPth; h/:

For the principal symbols of the operators in (4.35), (4.37) we have

(4.38)
�p.2P�

T
N �

ext,outPtPT /

�p.2N �
int,inPt /

D
@'T =@�

@'C=@�

�
b

.0/
T

�2
D

4.@'C=@�/.@'T =@�/

.@'C=@� C @'T =@�/2
:

Denote for a moment a WD @'C=@�, b WD @'T =@�. Then the quotient above equals 4ab=.a C b/2 � 1 that
confirms that the reflected wave has less energy than the incident one. By (4.30), 0 � b � 
a, 0 < 
 < 1.
This easily implies

(4.39)
4ab

.a C b/2
�

4


.1 C 
 /2
< 1:

Therefore, the expression in the middle represents an upper bound of the portion of the total energy that gets
transmitted in the asymptotic regime when the frequency tends to infinity. To get a lower bound, assume in
addition that b � b0 > 0 and a � a0 for some a0, b0, i.e.,

(4.40) 0 < b0 <
@'T

@�
;

@'C

@�
� a0:

Then

(4.41)
4ab

.a C b/2
�

4b2
0
=


.1 C 
 /2a2
0

> 0:

This is a lower bound of the ratio of the high frequency energy that is transmitted. As we can see, if the
transmitted ray gets very close to a tangent one, that ratio tends to 0.

So far this is still not a proof of such a statement but just a heuristic argument. We will formulate and
prove this below in Proposition 5.1.
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4.7. Snell’s Law. Assume now that .�1/0 is in the hyperbolic region for cint but not necessarily for cext. This
corresponds to a ray hitting � from the “interior” ˝int. There is no change in solving the eikonal equation
for 'R but a real phase 'T does not exist if the expression under the square root in (4.28) is negative.
This happens when .�1/0 is in the elliptic region for cext. Then there is no transmitted singularity in the
parametrix. We analyze this case below. If cint > cext, then .�1/0 that is in the hyperbolic region for cint by
assumption, also falls into the hyperbolic region for the speed cext, i.e., there is always a transmitted ray. If
cint < cext, then existence of a transmitted wave depends on where .�1/0 belongs w.r.t. cext.

Let ˛ be the angle that �1 D @'C=@xn makes with the (co)-normal represented by dxn, and let ˇ be the
angle between the latter and �T WD @'T =@xn. We have

(4.42) j� 0
j D j�1

j sin ˛ D c�1
int � sin ˛; j� 0

j D j�T j sin ˇ D c�1
ext � sin ˇ

By (4.42), we recover Snell’s law

(4.43)
sin ˛

sin ˇ
D

cint

cext
;

Assume now that cint < cext, which is the case where there might be no transmitted ray. Denote by

(4.44) ˛0.x/ D arcsin.cint.x/=cext.x//

the critical angle at any x 2 � that places .�1/0 in the glancing manifold w.r.t. cext. Then the transmitted
wave does not exist when ˛ > ˛0; more precisely we do not have a real phase function 'T in that case. It
exists, when ˛ < ˛0. In the critical case ˛ D ˛0, this construction provides an outgoing ray tangent to �

that we are not going to analyze.

4.8. The full internal reflection case. Assume now that .�1/0 is in the elliptic region w.r.t. cext, then there
is no transmitted singularity, but one can still construct a parametrix for the “evanescent” wave in ˝ext; and
there is a reflected ray. This is known as a full internal reflection. We give details below.

We proceed as above with one essential difference. There is no real valued solution 'T to the eikonal
equation (4.12) outside ˝0. Similarly to (4.28), we get formally,

(4.45)
@'T

@�
D i

q
j� 0j2 � c�2

ext �2 for xn
D 0:

The choice of the sign of the square root is dictated by the requirement that the parametrix (4.11) with
� D T be exponentially decreasing away from � instead of exponentially increasing.

In general, the eikonal equation may not be solvable but one can still construct solutions modulo O..xn/1/.
The same applies to the transport equations. One can show that the O..xn/1/ error does not change the
properties of uT to be a parametrix. In particular, in (4.35) in this case one gets

(4.46) E˝ext.uT .t2// Š 0;

because the principal term of @ NuT =@� in (4.34) now is pure imaginary instead of being real. Moreover, uT

is smooth in N̋ ext. Therefore, no energy, as far as the principal part only is considered, is transmitted to ˝ext.
That does not mean that the solution vanishes there, of course.

4.9. Glancing, gliding rays and other cases. We do not analyze the cases where .�1/0 is in the glancing
manifold w.r.t. to one of the speeds. We can do that because the analysis of those cases in not needed
because of our assumptions guaranteeing no tangent rays. The analysis there is more delicate, and we refer
to [30, 20, 21] for more details and examples. We do not analyze either the case where .�1/0 is in the elliptic
region with respect to either speed.
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4.10. Justification of the parametrix. Denote by uR D ŒuR; @tuR �, uT D ŒuT ; @tuT � the approximate
solutions constructed above, defined for t in some neighborhood of t2. Then uR D VRh, uT D VT h, where
VR;T are the FIOs constructed above. Let uC be the solution of (2.1) defined above, with initial data ˘Cf
at t D 0 having wave front set in a small neighborhood of .x0; �0/. The map �C W f 7! uCjR�� D h is an
FIO described in [27]. Then near .t1; x1/,

uR D VR�f; uT D VT �f;

the former supported in R � N̋ int, and the later in R � N̋ ext. So far we had two objects that we denoted by
uC: first, the parametrix of the solution of (2.1) corresponding to the positive sound speed c.x/j�j; and the
parametrix in R � N̋ int for the incoming solution corresponding to boundary value h. When h D �Cf, those
two parametrices coincide up to a smooth term, as it is not hard to see (the second one is a back-projection
and is discussed in [27], in fact). This justifies the same notation for them that we will keep.

Consider the parametrix vp WD uC C uR C uT . We can always assume that its support is in some small
neighborhood of the geodesic that hits R � � at .t1; x1/ and is tangent to �1 there; and then reflects, and
another branch refracts, see Figure 2. In particular, then h has t -support near t D t1, let us say that this
included in the interval Œt1 � "; t1 C "� with some " > 0. At t D t2 WD t1 C 2", let x2 be the position of
the reflected ray, and let �2 be its unit co-direction. Then WF.uR.t2; �// is in a small conic neighborhood of
.x2; �2/.

Let v.t; �/ D etP˘Cf be the exact solution, with some fixed choice of the parametrix Q�1 in the definition
of ˘C, properly supported. Consider w D v � vp in Œ0; t2� � Rn. It satisfies

.@2
t � c2�/wjŒ0;t2�� N̋ int

2 C 1; .@2
t � c2�/wjŒ0;t2�� N̋ ext

2 C 1;(4.47)

wjŒ0;t2���ext � wjŒ0;t2���int 2 C 1;
@w

@�

ˇ̌
Œ0;t2���ext

�
@w

@�

ˇ̌
Œ0;t2���int

2 C 1:(4.48)

On the other hand, for 0 � t � 1, v is smooth. Let � 2 C 1.R/ be a function that vanishes in .�1; ı�

and equals 1 on Œ2ı; 1/, 0 < ı � 1. Then Qw WD �.t/w.t; x/ still satisfies (4.47), (4.48) and also vanishes
for t � 0. By [33, Theorem 1.36], Qw is smooth in Œ0; t2� � N̋ int, up to the boundary, and is also smooth in
Œ0; t2� � N̋ ext, up to the boundary. Therefore,

(4.49) v.t; �/ D vp.t; �/ C Kt f;

for any t 2 Œ0; t2�, where Kt is a compact operator inH, depending smoothly on t . The operator Kt depends
on Q as well. Therefore, the parametrix coincides with the exact solution up to a compact operator that is
also smoothing in the sense described above.

5. PROOF OF THE MAIN RESULT

We start with a lemma, that in principle is well known and is related to the classical Dirichlet principle.

Lemma 5.1. Let ˝ be a bounded set with smooth boundary. Define the map

˘˝ W H 1.˝/ 7�! HD.˝/

as follows: ˘˝u D u � �u, where �u is the solution to

��u D 0 in ˝; �uj@˝ D uj@˝ :

Then
k˘˝ukHD.˝/ � kukHD.˝/;

where kukHD.˝/ is the Dirichlet norm of u extended to functions in H 1.˝/ that may not vanish on @˝.
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Set ˘˝u D Œ˘˝u1; u2�. Then
E˝.˘˝u/ � E˝.u/:

Proof. In what follows, .�; �/HD.˝/ is the inner product in HD.˝/, see (3.2), applied to functions that belong
to H 1.˝/ but maybe not to HD.˝/ because they may not vanish on @˝. Since u D �u on @˝, and since
�u is harmonic, we get

.u � �u; �u/HD.˝/ D

Z
˝

r.u � �u/ � r N�u dx D 0:

Then
ku � �uk

2
HD.˝/ D kuk

2
HD.˝/ � k�uk

2
HD.˝/ � kuk

2
HD.˝/:

The second statement of the lemma follows immediately from the first one. �

It is easy to see that ˘˝ is a projection, orthogonal with respect to the product .�; �/HD.˝/. This products
defines a seminorm on H 1.˝/ only.

Before giving the proof of the main theorem, we will show that condition (2.9) implies the following
local energy decay estimate.

Proposition 5.1. Let (2.9) be satisfied. Then there exists 0 < � < 1 so that

(5.1) E˝.u.T // � �E˝.f/

for any solution u with initial data f D Œf1; 0� 2 H.K/.

Proof. We will use the geometric optics construction in section 4. Let X D diag.X; X / be a zeroth order
	DO with small enough essential support supported near some .x0; �0/ 2 T �K n 0. Let v WD etP˘CXf be
the corresponding solution. Recall that ˘C restricts propagation of singularities to the positive wave speed
c.x/j�j only, while X localizes near .x0; �0/. Assume for now, that the ray through .x0; �0/ gives rise to
both a reflected and a transmitted one, as in section 4.4.

We will use the energy computation in (4.35) and (4.37), under the assumption (4.40). According to those
relations, (4.38) and (4.41),

(5.2) E˝ext.uT .t2// � �0E˝int.uC.0// D <.M h; h/;

with M a 	DO of order 0 with non-negative principal symbol, some �0 2 .0; 1/, and we use the notation
in that section. By the Gȧrding inequality,

(5.3) E˝ext.uT .t2// � �0E˝int.uC.0// � C khk
2
H 1=2.R�@˝/

D �0E˝int.˘CXf/ � C khk
2
H 1=2.R�@˝/

:

The map �1;C W Œf1; 0� 7! h is an FIO of order 0 with a canonical relation of graph type discussed above.
Similarly, the map �2;C W Œ0; f2� 7! h is an FIO of order �1 with the same canonical relation. Then

khkH 1=2.R�@˝/ � C kuC.0/kH 1=2˚H �1=2 :

Therefore,

(5.4) E˝ext.uT .t2// � �0E˝int.˘CXf/ � C k˘CXfk2
H 1=2˚H �1=2 :

Next, assume that the ray through .x0; �0/ gives rise to a reflected ray only, as in section 4.8. Then by
(4.46),

(5.5) E˝ext.uT .t2// � C k˘CXfk2
H 1=2˚H �1=2 :

By energy preservation,

(5.6) E˝ext.uR.t2// � E˝int.˘CXf/ � C k˘CXfk2
H 1=2˚H �1=2 ;
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and we used the fact here that uC.t2; �/ can be obtain from the initial conditions by applying a smoothing
operator.

We will apply those arguments now in a more general situation. Assume now that .x0; �0/ 2 U , see (2.8).
By the definition of U , there is a path starting from .x0; �0/ or from .x0; �0/ so that it consists of finitely
many geodesic segments; and at least one of them is a geodesic hitting � transversely for the first time at
some x1 an angle strictly greater than the critical one �=2 � ˛0 at x1. Without loss of generality, we can
assume that we have the former case: the path starts from .x0; �0/. Then the next geodesic segment in that
path is a transmitted one that is not tangent to � . The inequality (4.40) then holds for the corresponding
phase with some b0 > 0.

Assume that the essential support of the symbol q is so small that the analysis in section 4.8 applies near
each full internal reflection. Then step by step, applying (5.6) consecutively, we can reduce the analysis to
the case where x1 is the first point where the geodesic from .x0; �0/ hits � . Then we apply (5.4) to estimate
the amount of energy that has been transmitted on the other side of � . Let for a moment assume that the
transmitted ray leaves ˝ for time t < T without further contact with � . Then for any t > t1, not necessarily
close to it, the map uT .t1; �/ 7! uT .t; �/ is an FIO that represents the solution of the wave equation outside
˝0 corresponding to the positive wave speed. In particular, it is not affected by the presence of a jump at
� . Therefore, an estimate equivalent to (5.4) is preserved for such t as well but now the energy of u.T /

is concentrated outside N̋ , up to smoothing terms. Let ˝0 be an open set with a smooth boundary so that
K � ˝0 b ˝ n � . Then

(5.7) kX˘Cfk2
H.˝0/ � CERnn˝.u.T // C C kfk2

H 1=2˚H �1=2 :

Above, we also modify ˘C and X by smoothing operators, if needed, so that X˘Cf belongs to the indicated
energy space, i.e., they vanish in Rn n ˝0.

Consider now the case where the ray guaranteed by (2.8), (2.9) may hit � again, even more than once,
before leaving N̋ and not coming back. At each such event, there will be no loss of energy at high frequen-
cies, as in (5.5), or there will be positive portion of the transmitted high frequency energy, as in (5.4). Then
(5.7) is still true.

So far we did not use the assumption f2 D 0. Now, since f D Œf1; 0�, we get ˘CXf D
1
2
Œf1; iQXf1�, see

(4.8). By the ellipticity of Q,

(5.8) kXf1kHD.˝0/ � C ku.T //kH 1.Rnn˝/˚L2.Rnn˝// C C kf1kH 1=2 :

By a compactness argument, in a conical neighborhood of S�K, we can take a finite pseudo-differential
partition of unity 1 D

P
j �j of symbols of 	DOs Xj localizing in conical neighborhoods of a finite number

of points .xj ; �j / 2 S�K. Thus we get

(5.9) kf1kHD.˝0/ � C ku.T //kH 1.Rnn˝/˚L2.Rnn˝// C C kf1kH 1=2 :

Consider the bounded map

(5.10) HD.K/ 3 f1 7�! u.T / 2 H 1.Rn
n ˝/ ˚ L2.Rn

n ˝//:

We claim that it is injective. Indeed, assume that for some f 2 K, for the corresponding u we have

u.T; x/ D 0; for x 62 ˝:

By finite domain of dependence in R � Rn n ˝, where c D 1, we get

(5.11) u.t; x/ D 0 when diste.x; ˝/ > jT � t j;

where diste stands for the Euclidean distance. One the other hand, we also have

(5.12) u.t; x/ D 0 when diste.x; ˝/ > jt j:
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t=T

t=T/2

t=0

t=3T/2

∂Ω

t=-T

Γ

FIGURE 3. The uniqueness argument in the proof of Proposition 5.1

Here, we applied finite domain of dependence argument outside ˝, as well. Note that this is not sharp,
because at least when c does not jump at � , then the Euclidean distance diste.x; ˝/ can be replaced by the
distance in the metric c�2dx2 between K and x.

Therefore,

(5.13) u.t; x/ D 0 when diste.x; ˝/ > T =2; �T =2 � t � 3T =2:

The solution u extends to an even function of t that is still a solution of the wave equation because f2 D 0.
Then one gets that (5.13) actually holds for jt j < 3T =2. We will conclude next by the unique continuation
Theorem 6.1 that u D 0 on Œ0; T � � ˝, therefore, f1 D 0, see Figure 3.

To this end, notice fist that from John’s theorem (equivalent to Tataru’s unique continuation result [27,
Theorem 2] in the Euclidean setting), we get u D 0 on Œ�T; T � � Rn n ˝. Fix x0 2 ˝. Then there is
a piecewise smooth curve starting at x0 in direction either �0 or ��0, where �0 is arbitrary and fixed, of
length less than T that reaches @˝. This means that dist.x0; Rn n ˝/ < T , see Definition 6.1. Then by
Theorem 6.1, u.0; �/ D 0 near x0. Since x0 was arbitrary, we get f D 0. This completes the proof of the
claim that (5.10) is injective.

Now, by [31, Proposition 5.3.1], since the inclusion HD.K/ ,! H 1=2 is compact, there is an estimate as
in (5.9), with a different C , with the last term missing, i.e.,

(5.14) kf1kHD.K/ � C ku.T /kH 1.Rnn˝/˚L2.Rnn˝/:

By finite speed of propagation, u.T / is supported in some large ball B. Apply the Poincaré inequality [5]
to conclude that

(5.15) kf1k
2
HD.K/ � CERnn˝.u.T //:

Then, using Lemma 5.1, we get
E˝.u.T // D ERn.u.T // � ERnn˝.u.T //

� EK.f/ � EK.f/=C

D .1 � 1=C 2/EK.f/;
and this completes the proof. �
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Proof of Theorem 2.1. Let f 2 H.˝/ first. Let w solve

(5.16)

8̂̂<̂
:̂

.@2
t � c2�/w D 0 in .0; T / � ˝;

wjŒ0;T ��@˝ D 0;

wjtDT D ujtDT � �;

wt jtDT D ut jtDT ;

where u solves (2.1) with a given f 2 H, and � is as in (2.4) with h D �f . We can also write

(5.17) Œw; wt �jtDT D ˘˝

�
Œu; ut �jfT g�˝

�
;

where ˘˝ W H 1.˝/ ! H.˝/ is the projection introduced in Lemma 5.1. Then

(5.18) E˝.w.T // � E˝.u.T //:

Let v be the solution of (2.4) with h D �f . Then vCw solves the same initial boundary value problem in
Œ0; T � � ˝ that u does (with initial conditions at t D T ), therefore u D v C w. Let now f D Œf1; 0� 2 H.K/.
Restrict u to t D 0 and project to HD.K/ to get

f1 D ˘KA1�1f1 C ˘Kw.0; �/:

Set
Kf1 D ˘Kw.0; �/:

It remains to show now that K extends to a contraction.
By (5.18) and Proposition 5.1, the energy of the initial conditions in (5.16) satisfies the inequality

(5.19) E˝.w.T // � �kf1k
2
HD

:

Since the Dirichlet boundary condition is energy preserving, we get

(5.20) E˝.w.0// D E˝.w.T // � �kf1k
2
HD

:

Therefore,

(5.21) kKf1k
2
HD.K/ � EK.˘Kw.0// � EK.w.0// � E˝.w.0// � �kf1k

2
HD

:

This completes the proof. �

6. UNIQUE CONTINUATION

Definition 6.1. Given x, y in Rn, let dist.x; y/ be the infimum of the length of all smooth curves connecting
x and y, intersecting � transversally at each common point, where the length is measured in the metric
c�2dx2.

The next result is a unique continuation theorem. The proof is based on the smooth case.

Theorem 6.1. Let x0 62 N̋ and T > 0. Assume that Œu; ut � 2 C.RI Hloc/ and u satisfies

.@2
t � c2�/u D 0;

in a neighborhood of the set

(6.1) U D f.t; x/I jt j C dist.x0; x/ � T g

and vanishes in a neighborhood of Œ�T; T � � fx0g. Then

(6.2) u.t; x/ D 0 in U :



THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING 21

Proof. When c is smooth, the theorem follows from Tataru’s unique continuation result [28, 29], see [27].
In the case we consider, we will base our proof on the smooth case.

We show next that one can assume without loss of generality that Œu; ut � 2 C.RI D.P//, where D.P/

stands for the domain of P equipped with the graph topology. Assume first that u solves the wave equation
in the whole R � Rn. By finite speed of propagation [33], we can always assume that u has compactly
supported Cauchy data for t D 0. Then u D etPf, with some f 2 H. Take � 2 C 1

0
.R/ and consider the

convolution u� D u �t � of u with � in the t variable. Then u� is a solution of the wave equation with
support close enough to that of u, if supp � is small enough; so if we prove the theorem for u� , that would
be enough. The initial value for u� D Œu� ; @tu� � at t D 0 is given by u�.0; �/ D

R
u�.�s; �/�.s/ ds. Apply

the generator P to that to get

Pu�.0; �/ D

Z
Pu�.�s; �/�.s/ ds D

Z
u�.�s; �/�0.s/ ds 2 H:

Therefore, the initial condition now is in the domain of P, and this proves our claim in this case. Note that
we can put any power of P there and get the same conclusion.

Assume now that u solves the wave equation near U only, as in the theorem. Let u� be as above. Fix
.t1; x1/ 2 U and let V WD f.t; x/I jt � t1j < "; jx �x1j < "g with some 0 < " � 1. By the non-sharp finite
speed of propagation result in [33], ujV depends on u.t0; �/, t0 WD t1 � 2", restricted to a neighborhood of
x1 of size O."/, assuming that all characteristic cones for the sound speed c0 WD max c with vertices in V

and above t D t0, lie entirely in U . The latter is true of " � 1. Therefore, we can cut u.t0; �/ appropriately
to make the support compact and contained in U \ ft D t0g, and then use it as initial data at t D t1 � 2".
Then we write v.t; �/ D ei.t�t0/Pg, where g is the localized Cauchy data at T D t0 as above. If the cutoff is
chosen appropriately, then u D v on V and we can apply the argument of the preceding paragraph.

We continue with the observation that if the set fjt � t0j C dist.x0; x/ � T0g for some t0, T0, does not
intersect R � ˝0, then one can apply the “smooth version” of the theorem to conclude that any solution in a
neighborhood of that set that vanishes near Œt0 � T0; t0 C T0� � fx0g also vanishes in that set.

Next, note that it is enough to show that u D 0 at one of the “extreme” points of U . More precisely, let y

be such that dist.x0; y/ D T . Assume that we can prove that u D 0 near .t; x/ D .0; y/. Let .Ot ; Ox/ be any
point in U , and consider the set

(6.3) jt � Ot j C dist.x0; x/ � OT WD dist.x0; Ox/:

It is included in U , and if we know to prove the result for the “extreme” points, then we would get that
u D 0 near .Ot ; Ox/.

We divide the rest of the proof into several steps. Let ˝0 be interior of the complement of the maximal
unbounded connected component of Rn n � . Let �0 D @˝0 � � . Given x, y both in Rn n ˝0, let
dist0.x; y/ be the infimum of the length of all smooth curves in Rn n ˝0, connecting x and y, intersecting
� transversally at each common point, where the length is measured in the metric c�2dx2.

Choose and fix y 2 �0 so that

(6.4) ` WD dist0.y; x0/ < T:

If there is no such y, then the theorem follows by its “smooth version”. Note that dist.y; x0/ � dist0.y; x0/,
therefore

(6.5) Œ�T C `; T � `� � fyg b U:

Fix 0 < ı � 1. Let yı be the point in Rn n ˝0 that lies on the normal geodesic through y, and is at distance
ı from y. Let Œ0; 1� 3 t 7! 
 .t/ be a smooth curve in Rn n N̋

0 connecting x0 D 
 .0/ and yı D 
 .1/ of
length (in the metric c�2dx2) `ı not exceeding ` C 3ı. It is easy to see that this can be done. Assume also
that ı is so small that `ı < T , see (6.4). Let 0 < " D dist0.
; � /=2.
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Let x1, x2; : : : xk be finitely many points on 
 , corresponding to increasing values of t , so that each
segment of c.t/ with endpoints .x0; x1/, .x1; x2/, . . . , .xk ; yı/ is of length, that we denote by `x0x1

, etc.,
at most ". Apply the “smooth” version of the theorem for the set

UOt ;x1
WD

˚
.t; x/I jt � Ot j C dist0.x; x0/ � `x0x1

	
with Ot such that the interval ft I jt � Ot j � `x0x1

g is included in Œ�T; T �. Such Ot clearly exist and are described
by jOt j � T � `x0x1

. Next, for any Ot as above, we have UOt ;x1
� U \ .R � Rn n N̋ /. Therefore, we can apply

the “smooth” version of the theorem to conclude that u D 0 in a neighborhood of .Ot ; x1/ for any such Ot . In
other words, u D 0 in a neighborhood of Œ�T C `x0x1

; T � `x0x1
� � fx1g. We can repeat those arguments

to get u D 0 in a neighborhood of Œ�T C `x0x1
C `x1x2

; T � `x1x2
� `x1x2

� � fx2g, etc. Thus we get

u D 0 near Œ�T C `ı; T � `ı � � fyıg:

Take the limit ı ! 0 now to conclude that for any `0 > `, u D 0 on an open set containing Œ�T C `0; T �

`0� � fxI 0 < dist0.x; y/ � 1g. Perturb y, and use the fact that our assumptions on T are open, i.e., we can
perturb T a bit as well, to get

(6.6) u D 0 in an one-sided neighborhood of Œ�T C `; T � `� � fyg in R � Rn
n ˝0;

and is a solution there. By the assumed regularity of u, taking the trace of u and its normal derivative on � ,
from outside (i.e., in Rn n ˝0) is well defined; and this trace is zero near Œ�T C `; T � `� � fyg. By the
transmission conditions (3.6), the interior traces of u and its normal derivative vanish there as well. Let now
Qc be any smooth extension of cj˝0

to Rn. Then

(6.7) .@2
t � Qc2.x/�/u D 0 in a two-sided neighborhood of Œ�T C `; T � `� � fyg in R � Rn:

By a two-sided neighborhood, we mean a normal one (an open set) — we only used that term to emphasize
the difference with the neighborhood in (6.6). Since u vanishes in a neighborhood of Œ�T C `; T � `� � fyg

in the exterior, we apply the “smooth” version of the theorem for the speed Qc near sets of the kind ŒOt � ı; Ot C

ı� � fyg, 0 < ı � 1, jOt j < T � ` � ı to conclude that u also vanishes in the neighborhood in (6.7), after we
shrink it if needed by O.ı/. We can use our freedom to vary T a bit to conclude that

(6.8) u D 0 in a two-sided neighborhood of Œ�T C `; T � `� � fyg in R � Rn:

If small enough, that neighborhood is in U , see (6.5). Notice that we actually proved this property for any
y 2 Rnn˝0 with ` as in (6.4), not only for y 2 � but the latter case only requires the use of the transmission
condition.

For a fixed a 2 ˝0, close enough to �0, let ˝1 be the maximal open connected component of Rn n �

containing a. In ˝1, we define a distance function dist1 by minimizing over all smooth curves, transversal
to � , that stay in N̋

1. Let T1 D T � ` > 0, see (6.4), and choose y1 2 � , if possible, so that

(6.9) `1 WD dist1.y1; y/ < T1:

Use the arguments above with T replaced by T1, x0 replaced by y before, and y replacing y1. The only
difference is that we work in ˝1 now. We then get

(6.10) u D 0 in a two-sided neighborhood of Œ�T C ` C `1; T � ` � `1� � fy1g in R � Rn:

Let now z be a point with dist.z; x0/ < T . Choose ı > 0 so that there is a smooth curve 
 of length
dist.z; x0/ C ı crossing � transversally each time, and connecting x0 and z. Let also ı � 1 so that
dist.z; x0/ C ı < T . By a compactness argument, 
 will cross � finitely many times. Apply the argument
above for each segment either in N̋

0 or in Rn n ˝0 to get

u D 0 near Œ�T � dist.z; x0/ � ı; T C dist.z; x0/ C ı� � fzg:
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This shows that u D 0 in the interior of U . Since our assumptions allow us to increase T slightly, u D 0

near U as claimed. �

7. WE CAN GET THE WHOLE CAUCHY DATA ON Œ0; T � � @˝

We will show here that knowing �f, one can recover the Neumann derivative of the solution at Œ0; T ��@˝

as well. This is done by applying a non-local 	DO to �f. This is known in principle, and we do not use it
in our proofs. It reveals links to Control Theory however.

We will define first the outgoing DN map. Given g 2 C 1
0

.Œ0; 1/ � @˝/, let w solve the exterior mixed
problem with c D 1:

(7.1)

8̂̂<̂
:̂

.@2
t � �/w D 0 in .0; T / � Rn n N̋ ;

wjŒ0;T ��@˝ D g;

wjtD0 D 0;

@twjtD0 D 0;

Then we set

Ng D
@w

@�

ˇ̌̌
Œ0;T ��@˝

:

By [17], for g 2 H 1
.0/

.Œ0; T � � @˝/, we have Œw; wt � 2 C.Œ0; T /I H/; therefore,

N W H 1
.0/.Œ0; T � � @˝/ ! C.Œ0; T � � H

1
2 .@˝//

is continuous. Note that the results in [17] require the domain to be bounded but by finite domain of
dependence we can remove that restriction in our case. We also refer to [6, Proposition 2] for a sharp
domain of dependence result for exterior problems.

Lemma 7.1. Let u solve (2.1) with f 2 H compactly supported in ˝. Assume that c D 1 outside ˝. Then
for any T > 0, �f determines uniquely u in Œ0; T � � Rn n ˝ and the normal derivative of u on Œ0; T � � @˝

as follows:
(a) The solution u in Œ0; T � � Rn n ˝ coincides with the solution of (7.1) with g D �f,
(b) We have

(7.2)
@w

@�

ˇ̌̌
Œ0;T ��@˝

D N�f:

Proof. Let w be the solution of (7.1) with g D �f. The latter is in H 1
.0/

.Œ0; T � � @˝/, see the paragraph
after (2.2). Let u be the solution of (2.1). Then u � w solves the unit speed wave equation in Œ0; T � � Rn n ˝

with zero Dirichlet data and zero initial data. Therefore, u D w in Œ0; T � � Rn n ˝. �

Remark 7.1. Note that c D 1 outside ˝ was not a necessary assumption.

8. CONCLUSIONS

We have developed a reconstruction method based on a Neumann series expansion to determine the source
term of a medium with discontinuous sound speed by making thermoacoustic measurements. The situation
models the behavior of the index of refraction in the brain. The main difference between the case of a
smooth speed c and a non-continuous one with jump type of singularities is the propagation of singularities.
In the present case, each ray may split into two parts when it hits the surface � where the speed jumps, then
each branch may split again, etc. This is illustrated in Figure 1. Each such branch carries a positive fraction
of the high frequency energy if there are segments tangent to � . The stability condition (2.9) then requires
that we can detect at least one of those branches issued from supp f and any direction at time jt j < T . Then
we also have an explicit inversion in the form of a convergent Neumann series as shown in Theorem 2.1.
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That reconstruction is based on applying a modified time reversal with a harmonic extension step, and then
iterating it. While for a smooth speed, the classical time reversal already provides a parametrix but not
necessarily an actual inversion, in the case under consideration the harmonic extension and the iteration are
even more important because the first term or the classical time reversal are not parametrices. This has been
also numerically observed on [23].

Numerical experiments done in [23] based on this approach show that one gets very good reconstruction
even without restricting the support of f to setsK satisfying (2.9), i.e., if we allow for invisible singularities.
The reconstruction is worse in the trapping region, and trapped conormal singularities are not recovered.

The partial data case for a discontinuous speed, i.e, when we have data on a part of @˝ is not studied
in this paper. It seems plausible that the methods in [27] can be extended but there are new technical
difficulties. Even for a smooth speed however, a convergent series solution is not known. On the other hand,
such reconstruction has been tried numerically in [23] with success. Under the condition that all singularities
issued from supp f are visible, for a smooth speed, it is shown in [27] that the inverse problem reduces to
a Fredholm equation with a trivial kernel. For a discontinuous speed of the type we study in this paper,
it follows from our analysis that we still get a Fredholm equation but the triviality of the kernel is a more
delicate question.
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[32] F. Trèves. Introduction to pseudodifferential and Fourier integral operators. Vol. 2. Plenum Press, New York, 1980. Fourier

integral operators, The University Series in Mathematics.
[33] M. Williams. Transmission across a moving interface: necessary and sufficient conditions for (l2) well posedmess. Indiana

Univ. Math. J., 41(2):303–338, 1992.
[34] M. Xu and L. V. Wang. Photoacoustic imaging in biomedicine. Review of Scientific Instruments, 77(4):041101, 2006.
[35] Y. Xu and L. V. Wang. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. IEEE Trans.

Ultrason., Ferroelectr., Freq. Control, 53(3):542–548, 2006.
[36] X. Yang and L. V. Wang. Monkey brain cortex imaging by photoacoustic tomography. J Biomed Opt, 13(4):044009, 2008.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195 AND DEPARTMENT OF MATHE-
MATICS, UNIVERSITY OF CALIFORNIA, IRVINE, IRVINE, CA 92697


