MATH 341, ASSIGNMENT \#1 DUE: WEDNESDAY, JANUARY 16, IN CLASS

Q1. Show that 1.3579579 is rational. Describe a procedure for showing that any real number which has a decimal expansion which eventually repeats is rational.

Q2. Show that $\sqrt{3}$ is irrational.

Q3. It is known that $\alpha=\sqrt{2}+\sqrt{3}$ is irrational. ${ }^{1}$ Find a polynomial with integer coefficients so that $p(\alpha)=0$.

A real number which is a root of a polynomial with integer coefficients is called an algebraic number. There are plenty of examples of irrational algebraic numbers. However, many real numbers, such as e, are not algebraic.

Q4. Let $A, B \subseteq X$. Draw pictures illustrating why $(A \cup B)^{c}=A^{c} \cap B^{c}$ and $(A \cap B)^{c}=$ $A^{c} \cup B^{c}$.
Q5. Let $A_{i} \subset X, i \in I$ be a collection of subsets of a set X indexed by I. Give a proof of DeMorgan's Laws

$$
\left(\bigcup_{i \in I} A_{i}\right)^{c}=\bigcap_{i \in I}\left(A_{i}\right)^{c}
$$

and

$$
\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I}\left(A_{i}\right)^{c}
$$

Q6. For $A, B, C \subseteq X$, show the following.
(1) $A \subseteq B$ if and only if $A \cup B=B$.
(2) $A \subseteq B$ if and only if $A \cap B=A$.
(3) $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.

Q7. Let $f: X \rightarrow Y$ be a function. Show that $f(A \cup B)=f(A) \cup f(B)$. Does $f(A \cap B)=$ $f(A) \cap f(B)$? If not, is there an inclusion?

[^0]Let $f: X \rightarrow Y$ be a function. For $B \subseteq Y$ we define the preimage (written as $\left.f^{-1}(B)\right)^{2}$ of B under f to be

$$
f^{-1}(B)=\{x \in X: f(x) \in B\} .
$$

Q8. Show for $A, B \subseteq Y$ that $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A \cap B)=f^{-1}(A) \cap$ $\mathrm{f}^{-1}(\mathrm{~B})$.

Let X be a set. The characteristic function f_{A} of a subset $A \subseteq X$ is the function such that $f_{A}(x)=1$ when $x \in A$ and $f_{A}(x)=0$ when $x \notin A$
Q9. For $A, B \subseteq X$, can you express the characteristic functions of the following sets in terms of f_{A} and f_{B} ?
(1) $A \cap B$
(2) A^{c}
(3) $A \cup B$

The Well Ordering Principle is the painfully obvious statement that any subset $\mathrm{S} \subseteq \mathbb{N}$ of the natural numbers (which is not the empty set!!) contains a smallest element.
Q10. Show that the Well Ordering Principle implies that Proof by Mathematical Induction is logically valid. ${ }^{3}$
Q11. Let U be the collection whose elements are all possible sets. (This is quite an impressive collection!) Should U be considered a set?
We let $[n]$ be the set $\{1, \ldots, n\}$ consisting of the first n natural numbers. The Pigeonhole Principle is the statement that for all $\mathrm{n} \in \mathbb{N}$ a function $\mathrm{f}:[\mathrm{n}] \rightarrow[\mathrm{n}]$ is injective if and only if it is surjective.
Challenge. Use induction to prove the Pigeonhole Principle.

[^1]
[^0]: ${ }^{1}$ If you enjoy a challenge, can you show this?

[^1]: ${ }^{2}$ This is just notation, and should not be interpreted as f having an inverse!
 ${ }^{3}$ Challenge: show the converse.

