MATH 341, ASSIGNMENT #1 DUE: WEDNESDAY, JANUARY 16, IN CLASS

Q1. Show that 1.3579579 is rational. Describe a procedure for showing that any real number which has a decimal expansion which eventually repeats is rational.

Q2. Show that $\sqrt{3}$ is irrational.

Q3. It is known that $\alpha = \sqrt{2} + \sqrt{3}$ is irrational.¹ Find a polynomial with integer coefficients so that $p(\alpha) = 0$.

A real number which is a root of a polynomial with integer coefficients is called an algebraic number. There are plenty of examples of irrational algebraic numbers. However, many real numbers, such as e, are not algebraic.

Q4. Let A, B \subseteq X. Draw pictures illustrating why $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$.

Q5. Let $A_i \subset X$, $i \in I$ be a collection of subsets of a set X indexed by I. Give a proof of DeMorgan's Laws

$$\left(\bigcup_{i\in I}A_i\right)^c=\bigcap_{i\in I}(A_i)^c$$

and

$$\left(\bigcap_{i\in I}A_i\right)^c=\bigcup_{i\in I}(A_i)^c.$$

Q6. For A, B, $C \subseteq X$, show the following.

- (1) $A \subseteq B$ if and only if $A \cup B = B$.
- (2) $A \subseteq B$ if and only if $A \cap B = A$.
- (3) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$

Q7. Let $f : X \to Y$ be a function. Show that $f(A \cup B) = f(A) \cup f(B)$. Does $f(A \cap B) = f(A) \cap f(B)$? If not, is there an inclusion?

¹If you enjoy a challenge, can you show this?

Let $f : X \to Y$ be a function. For $B \subseteq Y$ we define the preimage (written as $f^{-1}(B)$)² of B under f to be

$$f^{-1}(B) = \{x \in X : f(x) \in B\}.$$

Q8. Show for A, B \subseteq Y that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Let X be a set. The characteristic function f_A of a subset $A \subseteq X$ is the function such that $f_A(x) = 1$ when $x \in A$ and $f_A(x) = 0$ when $x \notin A$

Q9. For A, $B \subseteq X$, can you express the characteristic functions of the following sets in terms of f_A and f_B ?

(1) $A \cap B$ (2) A^{c} (3) $A \cup B$

The Well Ordering Principle is the painfully obvious statement that any subset $S \subseteq \mathbb{N}$ of the natural numbers (which is not the empty set!!) contains a smallest element.

Q10. Show that the Well Ordering Principle implies that Proof by Mathematical Induction is logically valid.³

Q11. Let U be the collection whose elements are all possible sets. (This is quite an impressive collection!) Should U be considered a set?

We let [n] be the set $\{1, ..., n\}$ consisting of the first n natural numbers. The Pigeonhole Principle is the statement that for all $n \in \mathbb{N}$ a function $f : [n] \to [n]$ is injective if and only if it is surjective.

Challenge. Use induction to prove the Pigeonhole Principle.

2

²This is just notation, and should not be interpreted as f having an inverse!

³Challenge: show the converse.