MATH 341, ASSIGNMENT #3 DUE: WEDNESDAY, JANUARY 30, IN CLASS

Q1. Exercise 2.5.1 on p. 31.

- **Q2.** Exercise 3.1.2 on p. 46.
- **Q3.** Exercise 3.2.2 on p. 46.
- **Q4.** Exercise 3.2.3 on p. 46.
- **Q5.** Exercise 3.3.3 on p. 47.
- **Q6.** Exercise 3.7.1 on p. 48.
- **Q7.** Prove the $K \epsilon$ principle on p. 40.

Q8. Prove or provide a counterexample for each of the following statements.

- (1) If (a_n) and (b_n) are bounded above, so is (a_nb_n) .
- (2) If (a_n) and (b_n) are both divergent, then $(a_n + b_n)$ is divergent.
- (3) If (a_n) and (a_nb_n) are both convergent, then so is (b_n) .
- (4) If (a_n) is convergent, then so is (a_n^2) .
- (5) If (a_n^2) is convergent, then so is (a_n) .
- (6) If $a_n < b_n$ both converge, then $\lim_{n\to\infty} a_n < \lim_{n\to\infty} b_n$.

Challenge. Let $a_1 = \sqrt{2}$ and define a_n recursively by $a_{n+1} = \sqrt{2 + a_n}$. Show the limit exists and compute it.