MATH 341, ASSIGNMENT \#3 DUE: WEDNESDAY, JANUARY 30, IN CLASS

Q1. Exercise 2.5.1 on p. 31.
Q2. Exercise 3.1.2 on p. 46.
Q3. Exercise 3.2.2 on p. 46.
Q4. Exercise 3.2.3 on p. 46.
Q5. Exercise 3.3.3 on p. 47.
Q6. Exercise 3.7.1 on p. 48.
Q7. Prove the $K-\epsilon$ principle on $p .40$.
Q8. Prove or provide a counterexample for each of the following statements.
(1) If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded above, so is $\left(a_{n} b_{n}\right)$.
(2) If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are both divergent, then $\left(a_{n}+b_{n}\right)$ is divergent.
(3) If $\left(a_{n}\right)$ and $\left(a_{n} b_{n}\right)$ are both convergent, then so is $\left(b_{n}\right)$.
(4) If $\left(a_{n}\right)$ is convergent, then so is $\left(a_{n}^{2}\right)$.
(5) If $\left(a_{n}^{2}\right)$ is convergent, then so is $\left(a_{n}\right)$.
(6) If $a_{n}<b_{n}$ both converge, then $\lim _{n \rightarrow \infty} a_{n}<\lim _{n \rightarrow \infty} b_{n}$.

Challenge. Let $a_{1}=\sqrt{2}$ and define a_{n} recursively by $a_{n+1}=\sqrt{2+a_{n}}$. Show the limit exists and compute it.

