MATH 341, QUIZ \#2 MONDAY, JANUARY 28

Question 0.0.1. Let $\left(a_{n}\right)$ be a sequence of integers. Show that $\lim _{n \rightarrow \infty} a_{n}=L$ if and only if L is an integer and $\left(a_{n}\right)$ is eventually constant with value L.

Proof. (\Rightarrow) For $\epsilon=1 / 2$ we have that there exists N so that for all $n \geqslant N,\left|a_{n}-L\right|<1 / 2$. By the triangle inequality

$$
\left|a_{n}-a_{m}\right| \leqslant\left|a_{n}-L\right|+\left|a_{m}-L\right|<1 / 2+1 / 2=1 .
$$

Thus $a_{n}=a_{m}$ for all $n, m \geqslant N$ since distinct integers are at least distance 1 apart, so $\left(a_{n}\right)$ is eventually constant with value a_{N}. From the definition of the limit and the fact that $a_{n}=a_{N}$ for all $n \geqslant N$, we have that $\left|a_{N}-L\right|<\epsilon$ for all $\epsilon>0$, so $L=a_{N}$ is an integer.
(\Leftarrow) There exists N so that for all $n \geqslant N, a_{n}=L$, thus for every $\epsilon>0$ we have $\left|a_{n}-L\right|=$ $0<\epsilon$ for all $n \geqslant N$, so the limit is seen to converge to L.

