MATH 341, QUIZ \#3

FRIDAY, FEBRUARY 15

Question 0.0.1. Determine the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} n^{2}\left(\frac{n}{n+1}\right)^{n^{2}} x^{n}
$$

You may use that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}=e^{a}
$$

Proof. Let $a_{n}=n^{2}\left(\frac{n}{n+1}\right)^{n^{2}}$. We know that

$$
\frac{1}{R}=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}
$$

if the limit exists, where R is the radius of convergence. We have that

$$
\left|a_{n}\right|^{1 / n}=\left(n^{2}\right)^{1 / n}\left(\frac{n}{n+1}\right)^{n^{2} / n}=\left(n^{1 / n}\right)^{2} \frac{1}{\left(\frac{n+1}{n}\right)^{n}} .
$$

We use that $\frac{n+1}{n}=1+\frac{1}{n}$, the existence of the limits $n^{1 / n} \rightarrow 1$ and $(1+1 / n)^{n} \rightarrow e \neq 0$, and the limit laws to get that

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\frac{\left(\lim _{n \rightarrow \infty} n^{1 / n}\right)^{2}}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}}=1^{2} / e
$$

so $1 / R=1 / e$ or $R=e$.

