MATH 341, QUIZ #4 FRIDAY, FEBRUARY 22

Question 0.0.1. Use the ε - δ definition of the limit to show $\lim_{x\to 2} x^2 + 1 = 5$ *Proof.* We have that $f(x) = x^2 + 1$, L = 5, and c = 2. So $|f(x) - L| = |(x^{2} + 1) - 5| = |x^{2} - 4| = |(x + 2)(x - 2)| = |x + 2| \cdot |x - 2|.$ If 1 < x < 3 (in other words, |x - 2| < 1), then 3 < |x + 2| < 5, thus $|(x^2 + 1) - 5| \leq 5|x - 2|.$

Given $\varepsilon > 0$, choosing $\delta \leqslant \varepsilon/5$ (and also $\delta < 1$), we have that whenever $0 < |x - 2| < \delta$, $|(x^2+1)-5|<5|x-2|=5\delta\leqslant\varepsilon$ thus verifying that $\lim_{x\to 2} x^2 + 1 = 5$.