MATH 341, QUIZ #5 MONDAY, MARCH 25

Question 0.0.1. Show that $e^x < 1 + 3x$ for $x \approx 0$, x > 0, by using the Mean Value Theorem on the interval [0, x].

Solution. e^x is continuous and differentiable on the entire real line, so it is continuous and differentiable on any interval. For any x > 0 consider the interval [0, x]. Since e^x is its own derivative, by the Mean Value Theorem, there is $c \in (0, x)$ so that

$$e^{c}=\frac{e^{x}-e^{0}}{x-0}.$$

This shows that $e^x - 1 = xe^c$, or $e^x = 1 + e^c x$.

If c < 1, then $e^c < e^1 < 3$, so

$$e^{x} = 1 + e^{c}x < 1 + 3x$$

when c can be guaranteed to be less than 1. Since $c \in (0, x)$, this will happen if x < 1. Thus, $e^x < 1 + 3x$ if x < 1.