MATH 341, QUIZ \#5

MONDAY, MARCH 25

Question 0.0.1. Show that $e^{x}<1+3 x$ for $x \approx 0, x>0$, by using the Mean Value Theorem on the interval $[0, x]$.

Solution. e^{x} is continuous and differentiable on the entire real line, so it is continuous and differentiable on any interval. For any $x>0$ consider the interval $[0, x]$. Since e^{x} is its own derivative, by the Mean Value Theorem, there is $c \in(0, x)$ so that

$$
e^{c}=\frac{e^{x}-e^{0}}{x-0} .
$$

This shows that $e^{x}-1=x e^{c}$, or $e^{x}=1+e^{c} x$.
If $\mathrm{c}<1$, then $e^{\mathrm{c}}<e^{1}<3$, so

$$
e^{x}=1+e^{c} x<1+3 x
$$

when c can be guaranteed to be less than 1 . Since $c \in(0, x)$, this will happen if $x<1$. Thus, $e^{x}<1+3 x$ if $x<1$.

