MATH 341, QUIZ \#6 WEDNESDAY, APRIL 3

Question 0.0.1. Using only the definition, show that the function x is Riemann integrable on $[0,1]$.

Solution. Let $\mathcal{P}=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$ be a partition of $[0,1]$ with $|\mathcal{P}|<\delta$. Since x is increasing, we have that

$$
u_{x}(\mathcal{P})=\sum_{i=0}^{n-1} x_{i+1}\left(x_{i+1}-x_{i}\right)
$$

and

$$
\mathrm{L}_{\chi}(\mathcal{P})=\sum_{i=0}^{n-1} x_{i}\left(x_{i+1}-x_{i}\right)
$$

Therefore, by combining like terms,

$$
\mathrm{u}_{x}(\mathcal{P})-\mathrm{L}_{x}(\mathcal{P})=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\left(x_{i+1}-x_{i}\right)
$$

Since $|\mathcal{P}|<\delta, 0<x_{i+1}-x_{i}<\delta$ for all $i=1, \ldots, n$, so

$$
\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\left(x_{i+1}-x_{i}\right)<\sum_{i=0}^{n-1} \delta\left(x_{i+1}-x_{i}\right)=\delta(1-0)=\delta
$$

Therefore, given any $\epsilon>0$, by choosing $\delta=\epsilon$ we have that $\mathrm{U}_{x}(\mathcal{P})-\mathrm{L}_{x}(\mathcal{P})<\epsilon$ when $|\mathcal{P}|<\delta$. This verifies the definition of Riemann integrability for x.

