ASSIGNMENT 1

Q2. Show that $\sqrt{3}$ is irrational[3 pts]

Method 1: if assuming $\sqrt{3}$ is a rational number, then it can be written as a reduced form $\sqrt{3}=$ $\frac{p}{q}$, and p, q are relatively prime. then $p^{2}=3 q^{2}$ which means $3 \mid p^{2}$. Since p could be written as $p=3 m+r, r=0,1,2$, then $p^{2}=9 m^{2}+6 m r+r^{2}, r^{2}=0,1,4$. so if $3 \mid p^{2}$, then $3 \mid r^{2}$ which means $r=0$, thus $3 \mid p$, then $\exists m$, s.t. $p=3 m$, then $9 m^{2}=p^{2}=3 q^{2} \Rightarrow 3 m^{2}=q^{2}$. as discussed before, we can get $3 \mid q$, which means 3 divides p, q, which is contradictive with assumption p, q are relatively prime. Thus, $\sqrt{3}$ is not rational.

Method 2: if assuming $\sqrt{3}$ is a rational number, then it can be written as a reduced form $\sqrt{3}=\frac{p}{q}$, and p, q are relatively prime and $p^{2}=3 q^{2}$. Since $p, q \in N$ means p, q has to be odd or even. If q is even then $\exists m \in N, q=2 m, \Rightarrow p^{2}=3 q^{2}=3 * 4 * m^{2}, \Rightarrow 4\left|p^{2} \Rightarrow 2\right| p$ which means p is also even. which is contradictive with assumption p, q are relatively prime. Same idea can prove p is not even, thus p, q are odd. Then $\exists m, n$, s.t. $p=2 m+1, q=2 n+1$. Then $p^{2}=4 n^{2}+4 n+1=3 *\left(4 m^{2}+4 m+1\right)=12 m^{2}+12 m+3=3 q^{2}, \Rightarrow 2 n^{2}+2 n=6 m^{2}+6 m+1$. which is impossible, since left side is even, right side is odd, they can not be identity. Thus, $\sqrt{3}$ is not rational.

Q6. For $\mathrm{A}, \mathrm{B}, \mathrm{C} \subset \mathbf{X}$, show the following.
(1) $A \subset B$ if and only if $A \cup B=B$.
(2) $A \subset B$ if and only if $A \cap B=B$.
(3) $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.

1) [1 pts$]$ Show that $A \cup B=B$ if and only if $A \subset B$.
$(\Rightarrow) \forall x \in A$, since $A \subset A \cup B$, and $A \cup B=B$, then $x \in B$, thus $A \subset B$.
(\Leftarrow) if $A \subset B$, then $A \cup B \subset B \cup B=B$. Combined with $B \subset A \cup B$, can get $A \cup B=B$.
b) [1 pts] Show that $A \cap B=A$ if and only if $A \subset B$.
$(\Rightarrow) \forall x \in A$, since $A=A \cap B, x \in A \cap B$. since $A \cap B \subset B$, thus $x \in B$, which means $A \subset B$.
(\Leftarrow) if $A \subset B$, then $A=A \cap A \subset A \cap B$. Combined with $A \cap B \subset A$, can get $A \cap B=B$.
c) $[1 \mathrm{pts}]$ Show that $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.
1), $(A \cup B) \cap C \supset(A \cap C) \cup(B \cap C): A \cap C \subset(A \cup B) \cap C$ and $B \cap C \subset(A \cup B) \cap C$, thus $(A \cup B) \cap C \supset(A \cap C) \cup(B \cap C)$.
2), $(A \cup B) \cap C \subset(A \cap C) \cup(B \cap C): \forall x \in(A \cup B) \cap C$ means $x \in C$ and $x \in A$ or B. if $x \in A$, then $x \in A \cap C$, then $x \in(A \cap C) \cup(B \cap C)$, if $x \in B$, then $x \in B \cap C$, then $x \in$ $(A \cap C) \cup(B \cap C)$, thus $(A \cup B) \cap C \subset(A \cap C) \cup(B \cap C)$.

Q8. Show for A, $\mathbf{B} \subset Y$ that $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A \cup B)=f^{-1}(A) \cap$ $f^{-1}(B)$.
a) $[2 \mathrm{pts}] f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$.
1), $f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B): \forall x \in f^{-1}(A \cup B)$ means $f(x) \in A \cup B$, then $x \in f^{-1}(A) \cup$ $f^{-1}(B)$.
2), $f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B): f^{-1}(A) \subset f^{-1}(A \cup B)$ and $f^{-1}(B) \subset f^{-1}(A \sup B)$, then $f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B)$.
b) $[2 \mathrm{pts}] f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$.
1), $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B): f^{-1}(A \cap B) \subset f^{-1}(A)$ and $f^{-1}(A \cap B) \subset f^{-1}(B)$, then $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$.
2), $f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B): \forall x \in f^{-1}(A) \cap f^{-1}(B)$ means $f(x) \in A$ and $f(x) \in B$, then $f(x) \in f^{-1}(A \cap B)$.

Challenge. Use induction to prove the Pigeonhole Principle.

Prove by induction. For $n=1$, it is obviously. Assume the statement holds for $n=k$, for $n=k+1$, case 1: if $f(k+1)=k+1$, then by the assumption that $f:[k] \rightarrow[k]$ is injective if and only if it is surjective, shows f is injective if and only if f is surjective.
case 2: if $f(k+1)=a, f(b)=k+1$, for $a \neq k+1$. Define a function g as $g(k+1)=k+1, g(b)=$ $a, g(s)=f(s)$ for $s \neq k+1, b$, then g satisfies case 1 , shows that g is injective if and only if g is surjective. By the definition of g, we can see, g is injective if and only if f is injective, g is surjective if and only if f is surjective, which proves the statement for $n=k+1$.
Complete the proof by principle of induction.

Completeness: [0/-1 pts].

