ASSIGNMENT 1

Q2. Show that $\sqrt{3}$ is irrational [3 pts]

Method 1: if assuming $\sqrt{3}$ is a rational number, then it can be written as a reduced form $\sqrt{3} = \frac{p}{q}$, and p, q are relatively prime. then $p^2 = 3 q^2$ which means $3|p^2$. Since p could be written as p = 3m + r, r = 0, 1, 2, then $p^2 = 9m^2 + 6mr + r^2, r^2 = 0, 1, 4$. so if $3|p^2$, then $3|r^2$ which means r = 0, thus 3|p, then $\exists m, s.t. \ p = 3m$, then $9m^2 = p^2 = 3q^2 \Rightarrow 3m^2 = q^2$. as discussed before, we can get 3|q, which means 3 divides p, q, which is contradictive with assumption p, q are relatively prime. Thus, $\sqrt{3}$ is not rational.

Method 2: if assuming $\sqrt{3}$ is a rational number, then it can be written as a reduced form $\sqrt{3} = \frac{p}{q}$, and p, q are relatively prime and $p^2 = 3 q^2$. Since $p, q \in N$ means p, q has to be odd or even. If q is even then $\exists m \in N, q = 2m, \Rightarrow p^2 = 3q^2 = 3 * 4 * m^2, \Rightarrow 4|p^2 \Rightarrow 2|p$ which means p is also even. which is contradictive with assumption p, q are relatively prime. Same idea can prove p is not even, thus p, q are odd. Then $\exists m, n, s.t. p = 2m + 1, q = 2n + 1$. Then $p^2 = 4n^2 + 4n + 1 = 3 * (4m^2 + 4m + 1) = 12m^2 + 12m + 3 = 3q^2, \Rightarrow 2n^2 + 2n = 6m^2 + 6m + 1$. which is impossible, since left side is even, right side is odd, they can not be identity. Thus, $\sqrt{3}$ is not rational.

Q6. For A, B, C \subset X, show the following.

- (1) $A \subset B$ if and only if $A \cup B = B$.
- (2) $A \subset B$ if and only if $A \cap B = B$.
- (3) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$

1)[1 pts] Show that $A \cup B = B$ if and only if $A \subset B$.

 $(\Rightarrow) \forall x \in A$, since $A \subset A \cup B$, and $A \cup B = B$, then $x \in B$, thus $A \subset B$.

 (\Leftarrow) if $A \subset B$, then $A \cup B \subset B \cup B = B$. Combined with $B \subset A \cup B$, can get $A \cup B = B$.

b)[1 pts] Show that $A \cap B = A$ if and only if $A \subset B$. $(\Rightarrow) \forall x \in A$, since $A = A \cap B$, $x \in A \cap B$. since $A \cap B \subset B$, thus $x \in B$, which means $A \subset B$. (\Leftarrow) if $A \subset B$, then $A = A \cap A \subset A \cap B$. Combined with $A \cap B \subset A$, can get $A \cap B = B$.

c)[1 pts] Show that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. 1), $(A \cup B) \cap C \supset (A \cap C) \cup (B \cap C) : A \cap C \subset (A \cup B) \cap C$ and $B \cap C \subset (A \cup B) \cap C$, thus $(A \cup B) \cap C \supset (A \cap C) \cup (B \cap C)$.

 $2), (A \cup B) \cap C \subset (A \cap C) \cup (B \cap C) : \forall x \in (A \cup B) \cap C \text{ means } x \in C \text{ and } x \in A \text{ or } B.$ if $x \in A, then \ x \in A \cap C, then \ x \in (A \cap C) \cup (B \cap C), if \ x \in B, then \ x \in B \cap C, then \ x \in (A \cap C) \cup (B \cap C), thus \ (A \cup B) \cap C \subset (A \cap C) \cup (B \cap C).$

Q8. Show for A, B \subset Y that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A \cup B) = f^{-1}(A) \cap f^{-1}(B)$.

a)[2 pts] $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

ASSIGNMENT 1

$$\begin{array}{l} 1), f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B): \ \forall x \in f^{-1}(A \cup B) \ \text{means} \ f(x) \in A \cup B, \ \text{then} \ x \in f^{-1}(A) \cup f^{-1}(B). \\ 2), f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B): \ f^{-1}(A) \subset f^{-1}(A \cup B) \ \text{and} \ f^{-1}(B) \subset f^{-1}(A \sup B), \ \text{then} \ f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B). \end{array}$$
$$\begin{array}{l} b)[2 \ \text{pts}] \ f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B). \\ 1), \ f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B): \ f^{-1}(A \cap B) \subset f^{-1}(A \cap B) \subset f^{-1}(A) \ \text{nterms} \ f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B). \\ 2), \ f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B): \ \forall x \in f^{-1}(A) \cap f^{-1}(B) \ \text{means} \ f(x) \in A \ \text{and} \ f(x) \in B, \ \text{then} \ f(x) \in f^{-1}(A \cap B). \end{array}$$

Challenge. Use induction to prove the Pigeonhole Principle.

Prove by induction. For n = 1, it is obviously. Assume the statement holds for n = k, for n = k + 1, case 1: if f(k + 1) = k + 1, then by the assumption that $f : [k] \to [k]$ is injective if and only if it is surjective, shows f is injective if and only if f is surjective. case 2: if f(k + 1) = a, f(b) = k + 1, for $a \neq k + 1$. Define a function g as g(k + 1) = k + 1, g(b) = a, g(s) = f(s) for $s \neq k + 1$, b, then g satisfies case 1, shows that g is injective if and only if g is surjective. By the definition of g, we can see, g is injective if and only if f is injective, g is surjective if and only if f is surjective. Complete the proof by principle of induction.

Completeness: [0/-1 pts].