ASSIGNMENT 2

[3 pts] Q3: If $a_{n}=\sum_{i=1}^{n} \frac{1}{i}$, use induction to show that $a_{2^{n}} \geq \frac{n}{2}$.
Proof. For $n=1, a_{1}=1>\frac{1}{2}$. Assume the statement holds for $n=k$ such that $a_{2^{k}} \geq \frac{k}{2}$, then for $n=k+1$,

$$
a_{2^{k+1}}=a_{2^{k}}+\sum_{i=2^{k}+1}^{2^{k+1}} \frac{1}{i} \geq \frac{k}{2}+\sum_{i=2^{k}+1}^{2^{k+1}} \frac{1}{2^{k+1}} \geq \frac{k+1}{2} .
$$

By method of induction, complete the proof.
[3 pts] Q8: Let $\left(a_{n}\right)$ be a sequence so that $a_{n} \in\{0, \ldots, 9\}$ for each n. Express using quantifiers the statement that $a_{1} \cdot a_{2} a_{3} a_{4} \ldots$ is the decimal expansion of a rational number.
Proof. For a given sequence $\left(a_{n}\right)$, if $\exists N, k \in \mathbb{N}^{+}$, such that $\forall n>N, a_{n+k}=a_{n}$, it is a decimal expansion of a rational number.
[4 pts] Q10: Consider the sequence $\left\{a_{n}\right\}$, where

$$
a_{n}=1+\frac{1}{1 \cdot 3}+\ldots+\frac{1}{1 \cdot 3 \cdot \ldots \cdot 2 n-1} .
$$

Decide whether a_{n} is bounded above or not, and prove your answer is correct.
Proof. It is bounded above. As for any $n \geq 1$,

$$
a_{n}=1+\frac{1}{1 \cdot 3}+\ldots+\frac{1}{1 \cdot 3 \cdot \ldots \cdot 2 n-1} \leq \sum_{k=1}^{n} \frac{1}{2^{k-1}}<2 .
$$

Challenge: Find all sequences $\left(a_{n}\right)$ of non-negative real numbers so that $\sum_{i=1}^{n} a_{i}^{3}=$ $\left(\sum_{i=1}^{n} a_{i}\right)^{2}$ for all n.
Proof. Denote $b_{n}=\max _{i<n} a_{i}$. Then $a_{n}=0$ or $b_{n}+1$. Prove by induction. For $n=1$, since $a_{1}^{3}=a_{1}^{2}$, $a_{1}=0$ or 1 . Assume the statement holds for $n=k$, then for $n=k+1$, assume $b_{k+1}=m$, then by the statement, $\sum_{i=1}^{k} a_{i}=\sum_{j=0}^{m} j=\frac{m(m+1)}{2}$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} a_{i}^{3}=\left(\sum_{i=1}^{k+1} a_{i}\right)^{2} & \Rightarrow \sum_{i=1}^{k} a_{i}^{3}+a_{k+1}^{3}=\left(\sum_{i=1}^{k} a_{i}\right)^{2}+a_{k+1}^{2}+2 a_{k+1}\left(\sum_{i=1}^{k} a_{i}\right) \\
& \Rightarrow a_{k+1}^{3}=a_{k+1}^{2}+2 a_{k+1}\left(\sum_{i=1}^{k} a_{i}\right) \\
& \Rightarrow a_{k+1}\left(a_{k+1}^{2}-a_{k+1}-m(m+1)\right)=0 \\
& \Rightarrow a_{k+1}\left(a_{k+1}+m\right)\left(a_{k+1}-(m+1)\right)=0 .
\end{aligned}
$$

Since a_{k+1} is a non-negative real number, so $a_{k+1}=0$ or $m+1$, which completes the proof.
Completeness: [0/-1 pts].

