ASSIGNMENT 3

Q1 [3 pts]: If $a \approx_{\epsilon} b$, and $|a| \leq K$, $|b| \leq K$, give an estimate for the accuracy of the approximation $a^n \approx b^n$, where n is a positive integer.

Proof.
$$|a^n - b^n| = \left| (a - b) \sum_{k=0}^{n-1} b^k a^{n-1-k} \right| \le |a - b| \sum_{k=0}^{n-1} |b^k a^{n-1-k}| \le \epsilon n K^{n-1}$$
. So $a^n \approx_{\epsilon n K^{n-1}} b^n$. \Box

Q4 [4 pts]:

(a), Prove the sequence $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ has a limit. (b), Criticize the following "proof" that its limit is 0: Give $\epsilon > 0$, then for i = 1, 2, 3...,we have $\frac{1}{n+i} < \epsilon$, if $\frac{1}{n} < \epsilon$, i.e. if $n > \frac{1}{\epsilon}$. Adding up these inequalities for i = 1, ..., n gives $0 < a_n < n\epsilon$, for $n > \frac{1}{\epsilon}$; therefore $a_n \approx_{n\epsilon} 0$, for n >> 1. By the definition of limit and the $K - \epsilon$ principle, $\lim a_n = 0$.

Proof. a), since $a_{n+1} - a_n = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1} > 0$, for all n > 0, sequence a_n is increasing. Since $a_n < \sum_{k=1}^n \frac{1}{n+1} \le 1$, then a_n is an increasing sequence which a upper bound, so it has a limit.

b), $K - \epsilon$ principle can not be used, as K dependents on n.

- Q8 [3 pts]: Prove or provide a counterexample for each of the following statements:
- (1), if (a_n) and (b_n) are bounded above, so is (a_nb_n) .
- (2), if (a_n) and (b_n) are both divergent, then $(a_n + b_n)$ is divergent.
- (3), if (a_n) and $a_n b_n$ are both convergent, then so is (b_n) .
- (4), if (a_n) is convergent, then so is (a_n^2) .
- (5), if (a_n^2) is convergent, then so is (a_n) .
- (6), if $a_n < b_n$ both converge, then $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$.

Proof. (1), False. For example $a_n = -n = b_n$.

- (2), False. For example $a_n = n, b_n = -n$.
- (3), False. For example $a_n = 0, b_n = n$.

(4), True. Assume $\lim_{n \to \infty} a_n = L$, then $\forall \epsilon > 0$, and $\epsilon < L, \exists N > 0, \forall n > N, |a_n - L| < \epsilon$. Then $|a_n^2 - L^2| = |a_n - L| |a_n^2 + L| < 3L\epsilon$. By $K - \epsilon$ principle, $\lim_{n \to \infty} a_n^2 = L^2$.

(5), False. For example $a_n = (-1)^n$.

(6), False. For example $a_n = -\frac{1}{n}, b_n = \frac{1}{n}$.

Challenge: Let $a_1 = \sqrt{2}$ and define a_n recursively by $a_{n+1} = \sqrt{2 + a_n}$. Show the limit exists and compute it.

Proof. First, a_n is an increasing sequence. Prove by induction. For $n = 2, a_2 = \sqrt{2+2} > \sqrt{2}$. Assume it holds for n = k, then for n = k + 1, $a_{k+1} - a_k = \sqrt{2 + a_k} - \sqrt{2 + a_{k-1}} > 0$, which prove a_n is increasing. Second, a_n is bounded above by 2. Prove by induction. For $n = 1, a_1 =$ $\sqrt{2} < 2$. Assume it holds for n = k, then for n = k + 1, $a_{k+1} = \sqrt{2 + a_k} \leq \sqrt{2 + 2} = 2$. Since a_n is an increasing sequence with a upper bound, a_n has a limit. Assume $\lim_{n \to \infty} a_n = L$, then $L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{2 + a_n} = \sqrt{2 + L}$, gives L = 2.

Completeness: [0/-1 pts].