ASSIGNMENT 3

Q1 [3 pts]: If $a \approx_{\epsilon} b$, and $|a| \leq K,|b| \leq K$, give an estimate for the accuracy of the approximation $a^{n} \approx b^{n}$, where n is a positive integer.

Proof. $\left|a^{n}-b^{n}\right|=\left|(a-b) \sum_{k=0}^{n-1} b^{k} a^{n-1-k}\right| \leq|a-b| \sum_{k=0}^{n-1}\left|b^{k} a^{n-1-k}\right| \leq \epsilon n K^{n-1}$. So $a^{n} \approx_{\epsilon n K^{n-1}} b^{n}$.
Q4 [4 pts]:
(a), Prove the sequence $a_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}$ has a limit.
(b), Criticize the following "proof" that its limit is 0: Give $\epsilon>0$, then for $i=1,2,3 \ldots$, we have $\frac{1}{n+i}<\epsilon$, if $\frac{1}{n}<\epsilon$, i.e. if $n>\frac{1}{\epsilon}$. Adding up these inequalities for $i=1, \ldots, n$ gives $0<a_{n}<n \epsilon$, for $n>\frac{1}{\epsilon}$; therefore $a_{n} \approx_{n \epsilon} 0$, for $n \gg 1$. By the definition of limit and the $K-\epsilon$ principle, $\lim a_{n}=0$.
Proof. a), since $a_{n+1}-a_{n}=\frac{1}{2 n+2}+\frac{1}{2 n+1}-\frac{1}{n+1}>0$, for all $n>0$, sequence a_{n} is increasing. Since $a_{n}<\sum_{k=1}^{n} \frac{1}{n+1} \leq 1$, then a_{n} is an increasing sequence which a upper bound, so it has a limit.
b), $K-\epsilon$ principle can not be used, as K dependents on n.

Q8 [3 pts]: Prove or provide a counterexample for each of the following statements:
(1), if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded above, so is $\left(a_{n} b_{n}\right)$.
(2), if $\left(a_{n}\right)$ and (b_{n}) are both divergent, then $\left(a_{n}+b_{n}\right)$ is divergent.
(3), if $\left(a_{n}\right)$ and $a_{n} b_{n}$ are both convergent, then so is $\left(b_{n}\right)$.
(4), if $\left(a_{n}\right)$ is convergent, then so is $\left(a_{n}^{2}\right)$.
(5), if $\left(a_{n}^{2}\right)$ is convergent, then so is $\left(a_{n}\right)$.
(6), if $a_{n}<b_{n}$ both converge, then $\lim _{n \rightarrow \infty} a_{n}<\lim _{n \rightarrow \infty} b_{n}$.

Proof. (1), False. For example $a_{n}=-n=b_{n}$.
(2), False. For example $a_{n}=n, b_{n}=-n$.
(3), False. For example $a_{n}=0, b_{n}=n$.
(4), True. Assume $\lim _{n \rightarrow \infty} a_{n}=L$, then $\forall \epsilon>0$, and $\epsilon<L, \exists N>0, \forall n>N,\left|a_{n}-L\right|<\epsilon$. Then $\left|a_{n}^{2}-L^{2}\right|=\left|a_{n}-L\right|\left|a_{n}+L\right|<3 L \epsilon$. By $K-\epsilon$ principle, $\lim _{n \rightarrow \infty} a_{n}^{2}=L^{2}$.
(5), False. For example $a_{n}=(-1)^{n}$.
(6), False. For example $a_{n}=-\frac{1}{n}, b_{n}=\frac{1}{n}$.

Challenge: Let $a_{1}=\sqrt{2}$ and define a_{n} recursively by $a_{n+1}=\sqrt{2+a_{n}}$. Show the limit exists and compute it.
Proof. First, a_{n} is an increasing sequence. Prove by induction. For $n=2, a_{2}=\sqrt{2+2}>\sqrt{2}$. Assume it holds for $n=k$, then for $n=k+1, a_{k+1}-a_{k}=\sqrt{2+a_{k}}-\sqrt{2+a_{k-1}}>0$, which prove a_{n} is increasing. Second, a_{n} is bounded above by 2 . Prove by induction. For $n=1, a_{1}=$ $\sqrt{2}<2$. Assume it holds for $n=k$, then for $n=k+1, a_{k+1}=\sqrt{2+a_{k}} \leq \sqrt{2+2}=2$. Since a_{n} is an increasing sequence with a upper bound, a_{n} has a limit. Assume $\lim _{n \rightarrow \infty} a_{n}=L$, then $L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \sqrt{2+a_{n}}=\sqrt{2+L}$, gives $L=2$.

Completeness: [0/-1 pts].

