ASSIGNMENT 4

Q2 [3 pts]: Show that if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof. By $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1, \exists N$ such that $\forall n>N,\left|\frac{a_{n+1}}{a_{n}}\right| \leq r<1$. Assume $\left|a_{N}\right|=C>0$. Note that if $C=0$, then $a_{n}=0$ for $n>N . \forall \epsilon>0$, choose N_{1} such that $r^{N_{1}-1-N}<\frac{\epsilon}{C}$, then $\forall n>N_{1}$,

$$
\left|a_{n}\right|=\left|a_{N}\right| \Pi_{k=N}^{n-1}\left|\frac{a_{k+1}}{a_{k}}\right| \leq\left|a_{N}\right| r^{n-1-N} \leq\left|a_{N}\right| r^{N_{1}-1-N}<\epsilon .
$$

Q5 [3 pts]: Show that $\lim _{n \rightarrow \infty} \sum_{i=n}^{2 n} \frac{1}{i}=\ln 2$. Use the method from Example 5.2C on p.66.
Proof. For $n \geq 2$,

$$
\begin{aligned}
& \sum_{i=n}^{2 n} \int_{i}^{i+1} \frac{1}{x} d x \leq \sum_{i=n}^{2 n} \int_{i}^{i+1} \frac{1}{i} \leq \sum_{i=n}^{2 n} \int_{i}^{i+1} \frac{1}{x-1} d x \\
\Rightarrow & \int_{n}^{2 n+1} \frac{1}{x} d x \leq \sum_{i=n}^{2 n} \frac{1}{i} \leq \int_{n}^{2 n+1} \frac{1}{x-1} d x
\end{aligned}
$$

as $\lim _{n \rightarrow \infty} \int_{n}^{2 n+1} \frac{1}{x} d x=\lim _{n \rightarrow \infty} \int_{n}^{2 n+1} \frac{1}{x-1} d x=\ln 2$. Then completes the proof by squeeze Theorem.
Q8 [4 pts]: Suppose a sequence $\left\{a_{n}\right\}$ has this property: there exist constants C and K, with $0<K<1$, such that $\left|a_{n}-a_{n+1}\right|<C K^{n}$, for $n \gg 1$. Prove that $\left\{a_{n}\right\}$ is a Cauchy sequence.

Proof. By $\left|a_{n}-a_{n+1}\right|<C K^{n}$, for $n \gg 1, \exists N>0$ such that $\forall n>N,\left|a_{n}-a_{n+1}\right|<C K^{n}$. $\forall \epsilon>0$, choose N_{1} such that $\frac{C}{1-K} K^{N_{1}}<\epsilon$ and $N_{1}>N$, then $\forall m, n>N_{1}$, Wlog, assume $m>n$, we have

$$
\left|a_{m}-a_{n}\right| \leq \sum_{j=n}^{m-1}\left|a_{j}-a_{j+1}\right| \leq \sum_{j=n}^{m-1} C K^{j}=C K^{n} \frac{1-K^{m-n}}{1-K} \leq C K^{N_{1}} \frac{1}{1-K}<\epsilon
$$

Challenge: Show the set of cluster points of $\sin (n)$ is exactly $[-1,1]$.
Proof. Denote $\lfloor a\rfloor$ be the largest integer less than a. Then the question is equivalent to prove $\left\{\left.\frac{n}{2 \pi}-\left\lfloor\frac{n}{2 \pi}\right\rfloor \right\rvert\, n \in \mathbb{N}\right\}$ is dense in $[0,1]$. First let's construct a sequence in the following way: $a_{1}=$ $\frac{1}{2 \pi}, n_{1}=1$. As $\frac{1}{2 \pi}$ is irrational, there exists integer m_{1} such that $\frac{1}{2 \pi}\left(m_{1}-1\right)<1<\frac{m_{1}}{2 \pi}$, then $\frac{m_{1}}{2 \pi}-1=\frac{m_{1}}{2 \pi}-\left\lfloor\frac{m_{1}}{2 \pi}\right\rfloor<a_{1}$, denote $a_{2}=\frac{m_{1}}{2 \pi}-\left\lfloor\frac{m_{1}}{2 \pi}\right\rfloor$ and $n_{2}=n_{1} m_{1}$, repeat above steps, we can generate a strictly decreasing sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$.

Prove the question by contradiction. If assume $\left\{\left.\frac{n}{2 \pi}-\left\lfloor\frac{n}{2 \pi}\right\rfloor \right\rvert\, n \in \mathbb{N}\right\}$ is not dense in $[0,1]$, then there exists a, b such that $0<a<b<1$, such that $(a, b) \cap\left\{\left.\frac{n}{2 \pi}-\left\lfloor\frac{n}{2 \pi}\right\rfloor \right\rvert\, n \in \mathbb{N}\right\}=\emptyset$ and $\exists N \in \mathbb{N}$ that $a=\frac{N}{2 \pi}-\left\lfloor\frac{N}{2 \pi}\right\rfloor$. As the sequence defined in first part is strictly decreasing to zero, $\exists a_{k}=\frac{n_{k}}{2 \pi}-\left\lfloor\frac{n_{k}}{2 \pi}\right\rfloor<$ $\frac{b-a}{2}$, then $a<a+a_{k}=\frac{N+n_{k}}{2 \pi}-\left\lfloor\frac{N+n_{k}}{2 \pi}\right\rfloor<b$ which contracts to the assumption.

Completeness: [0/-1 pts].

