ASSIGNMENT 5

Q4 [3 pts]: (a) Prove: $\sum a_n$ absolutely convergent $\Rightarrow \sum a_n^2$ convergent. (b) Show that "absolutely" cannot be dropped in part (a).

Proof. (a), As $\sum_{n>N} a_n$ is absolutely convergent, then $\exists N > 0$, such that $|a_n| < 1$ for n > N, then $\sum_{n>N} a_n^2 < \sum_{n>N} |a_n| < \infty$, which proves $\sum a_n^2$ is also convergent. (b), For example, $\left\{a_n = (-1)^n \frac{1}{\sqrt{n}}\right\}$.

Q5[3 pts]: Test each of the following series for convergence.

Proof. (d) $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$. By ratio test $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4}$, so it is absolutely convergent. (e) $\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1} \right)^n$. By the n-th root test $\lim_{n \to \infty} |a_n|^{1/n} = \lim_{n \to \infty} \frac{n+1}{2n+1} = \frac{1}{2}$, so it is absolutely convergent. (h) $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$. By ratio test $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} 2(1 - \frac{1}{1+n})^n = \frac{2}{e}$, so it is absolutely convergent. (j) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$. By integral test define $f(x) = \frac{1}{x(\ln x)^p}$, then for $p \ge 0$ and $x \ge 3$, $f(x) \ge 0$ and decreasing. Then $\int_3^{\infty} f(x) \, dx = \frac{1}{1-p} (\ln x)^{1-p} \Big|_3^{\infty}$ which is finite for p > 1 and infinite for p < 1. So the series convergent for p > 1 and divergent for $0 \le p < 1$. For p = 1, define $f(x) = \frac{1}{x\ln x}$ and $\int_2^{\infty} \frac{1}{x\ln x} \, dx = \ln \ln x \Big|_2^{\infty}$ is infinity, by integral test, the series divergent for p = 1. For p < 0, since $\frac{1}{n(\ln n)^p} > \frac{1}{n}$, the series is divergent.

Q7[4 pts]: Find the radius of convergence for the following power series.

Proof. (a),
$$\sum_{n=1}^{\infty} \frac{x^n}{2^n \sqrt{n}}$$
, by ratio test,
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x|}{2} \sqrt{\frac{n}{n+1}} = \frac{|x|}{2}$$
, so radius is $R = 2$.
(b),
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$$
, by ratio test,
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+1)} |x| = \frac{|x|}{4}$$
, so radius is $R = 4$.
(c),
$$\sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n}}$$
, by n-th root test,
$$\lim_{n \to \infty} |a_n|^{1/n} = \lim_{n \to \infty} \frac{|x|}{n^{1/n^2}} = |x|$$
, so radius is $R = 1$.
(d),
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{4^n (n!)^2}$$
, by ratio test,
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{x^2}{4(n+1)^2} = 0$$
, so radius is $R = \infty$.
(e),
$$\sum_{n=1}^{\infty} \left(\frac{n+2}{n} \right)^n x^n$$
, by n-th root test,
$$\lim_{n \to \infty} |a_n|^{1/n} = \lim_{n \to \infty} \frac{n+2}{n} |x| = |x|$$
, so radius is $R = 1$.
(f),
$$\sum_{n=2}^{\infty} \frac{x^n}{(\ln n)^n}$$
, by n-th root test,
$$\lim_{n \to \infty} |a_n|^{1/n} = \lim_{n \to \infty} \frac{|x|}{\ln n} = 0$$
, so radius is $R = \infty$.
(g),
$$\sum_{n=1}^{\infty} \frac{n^n x^n}{n!}$$
, by ratio test,
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} (1 + \frac{1}{n})^n |x| = e|x|$$
, so radius is $R = \frac{1}{e}$.
(h),
$$\sum_{n=1}^{\infty} \frac{n! x^n}{1\cdot 3 \cdot \cdots (2n-1)}$$
, by ratio test,
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{2n+3} |x| = \frac{|x|}{2}$$
, so radius is $R = 2$.

Challenge: For each series in Exercise 8.1/1 above, determine whether it converges at the endpoints $\pm R$ of the interval of convergence, if it is easy to do so.

Proof. (a), At
$$x = 2$$
, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent. At $x = -2$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ is convergent.
(b), At $x = 4$, $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} 4^n = \sum_{n=1}^{\infty} \frac{(2n) \cdot (2n-2) \cdots 2}{(2n-1) \cdot (2n-3) \cdots 1} > \sum_{n=1} 1$ is divergent.
At $x = -4$, $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} 4^n (-1)^n$ by Raabe's test, it is divergent.
(c), At $x = 1$, $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ is divergent. At $x = -1$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt{n}}$ is divergent.
(e), At $x = 1$, $\sum_{n=1}^{\infty} (\frac{n+2}{n})^n$ is divergent. At $x = -1$, $\sum_{n=1}^{\infty} (\frac{n+2}{n})^n (-1)^n$ is divergent.
(g), At $x = \frac{1}{e}$, $\sum_{n=1}^{\infty} \frac{(n/e)^n}{n!}$, by Raabe's test, $\rho_n = \frac{1}{2}$, so it is divergent.
(h), Same with (b).

Challenge: Determine, with proof, the radius of convergence of $\sum (\sin n)x^n$.

Proof. For |x| < 1, then $\sum |(\sin n)x^n| \le \sum |x^n|$ is convergent. For |x| = 1, as discussed in the Challenge problem of HW 4, $\{\sin n\}$ is dense in [-1, 1], then define subsequece $a_m = |\sin(n)|$, for any n such that $\frac{1}{m+1} < |\sin n| < \frac{1}{m}$, then $\sum |\sin n| > \sum \frac{1}{m} = \infty$. So the radius is 1.

Completeness: [0/-1 pts].