
ASSIGNMENT 5

Q4 [3 pts]: (a) Prove:
∑
an absolutely convergent ⇒

∑
a2n convergent. (b) Show that

”absolutely” cannot be dropped in part (a).

Proof. (a), As
∑
an is absolutely convergent, then ∃N > 0, such that |an| < 1 for n > N , then∑

n>N

a2n <
∑
n>N

|an| <∞, which proves
∑
a2n is also convergent.

(b), For example,
{
an = (−1)n 1√

n

}
. �

Q5[3 pts]: Test each of the following series for convergence.

Proof. (d)
∞∑
n=0

(n!)2

(2n)! . By ratio test lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

(n+1)2

(2n+2)(2n+1) = 1
4 , so it is absolutely convergent.

(e)
∞∑
n=1

(
n+1
2n+1

)n
. By the n-th root test lim

n→∞
|an|1/n = lim

n→∞
n+1
2n+1 = 1

2 , so it is absolutely convergent.

(h)
∞∑
n=1

2nn!
nn . By ratio test lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

2(1− 1
1+n)n = 2

e , so it is absolutely convergent.

(j)
∞∑
n=2

1
n(lnn)p . By integral test define f(x) = 1

x(lnx)p , then for p ≥ 0 and x ≥ 3, f(x) ≥ 0 and

decreasing. Then
∫∞
3 f(x) dx = 1

1−p(lnx)1−p
∣∣∣∞
3

which is finite for p > 1 and infinite for p < 1. So

the series convergent for p > 1 and divergent for 0 ≤ p < 1. For p = 1, define f(x) = 1
xlnx and∫∞

2
1

xlnx dx = ln lnx
∣∣∣∞
2

is infinity, by integral test, the series divergent for p = 1. For p < 0, since

1
n(lnn)p >

1
n , the series is divergent. �

Q7[4 pts]: Find the radius of convergence for the following power series.

Proof. (a),
∞∑
n=1

xn

2n
√
n

, by ratio test, lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

|x|
2

√
n

n+1 = |x|
2 , so radius is R = 2.

(b),
∞∑
n=1

(n!)2

(2n)!x
n, by ratio test, lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

(n+1)2

(2n+2)(2n+1) |x| =
|x|
4 , so radius is R = 4.

(c),
∞∑
n=1

xn

n
√
n

, by n-th root test, lim
n→∞

|an|1/n = lim
n→∞

|x|
n1/n2 = |x|, so radius is R = 1.

(d),
∞∑
n=0

(−1)nx2n

4n(n!)2
, by ratio test, lim

n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

x2

4(n+1)2
= 0, so radius is R =∞.

(e),
∞∑
n=1

(
n+2
n

)n
xn, by n-th root test, lim

n→∞
|an|1/n = lim

n→∞
n+2
n |x| = |x|, so radius is R = 1.

(f),
∞∑
n=2

xn

(lnn)n , by n-th root test, lim
n→∞

|an|1/n = lim
n→∞

|x|
lnn = 0, so radius is R =∞.

(g),
∞∑
n=1

nnxn

n! , by ratio test, lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

(
1 + 1

n

)n |x| = e|x|, so radius is R = 1
e .

(h),
∞∑
n=1

n!xn

1·3·5···(2n−1) , by ratio test, lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

n+1
2n+3 |x| =

|x|
2 , so radius is R = 2. �

Challenge: For each series in Exercise 8.1/1 above, determine whether it converges
at the endpoints ±R of the interval of convergence, if it is easy to do so.
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2 ASSIGNMENT 5

Proof. (a), At x = 2,
∞∑
n=1

1√
n

is divergent. At x = −2,
∞∑
n=1

(−1)n√
n

is convergent.

(b), At x = 4,
∞∑
n=1

(n!)2

(2n)!4
n =

∞∑
n=1

(2n)·(2n−2)···2
(2n−1)·(2n−3)···1 >

∑
n=1

1 is divergent.

At x = −4,
∞∑
n=1

(n!)2

(2n)!4
n(−1)n by Raabe’s test, it is divergent.

(c), At x = 1,
∞∑
n=1

1
n
√
n

is divergent. At x = −1,
∞∑
n=1

(−1)n
n
√
n

is divergent.

(e), At x = 1,
∞∑
n=1

(
n+2
n

)n
is divergent. At x = −1,

∞∑
n=1

(
n+2
n

)n
(−1)n is divergent.

(g), At x = 1
e ,
∞∑
n=1

(n/e)n

n! , by Raabe’s test, ρn = 1
2 , so it is divergent.

(h), Same with (b).
�

Challenge: Determine, with proof, the radius of convergence of
∑

(sinn)xn.

Proof. For |x| < 1, then
∑
|(sinn)xn| ≤

∑
|xn| is convergent. For |x| = 1, as discussed in the

Challenge problem of HW 4, {sinn} is dense in [−1, 1], then define subsequece am = | sin(n)|, for
any n such that 1

m+1 < | sinn| <
1
m , then

∑
| sinn| >

∑ 1
m =∞. So the radius is 1. �

Completeness: [0/-1 pts].


