ASSIGNMENT 5

Q4 [3 pts]: (a) Prove: $\sum a_{n}$ absolutely convergent $\Rightarrow \sum a_{n}^{2}$ convergent. (b) Show that "absolutely" cannot be dropped in part (a).

Proof. (a), As $\sum a_{n}$ is absolutely convergent, then $\exists N>0$, such that $\left|a_{n}\right|<1$ for $n>N$, then $\sum_{n>N} a_{n}^{2}<\sum_{n>N}\left|a_{n}\right|<\infty$, which proves $\sum a_{n}^{2}$ is also convergent.
(b), For example, $\left\{a_{n}=(-1)^{n} \frac{1}{\sqrt{n}}\right\}$.

Q5[3 pts]: Test each of the following series for convergence.
Proof. (d) $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}$. By ratio test $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+2)(2 n+1)}=\frac{1}{4}$, so it is absolutely convergent.
(e) $\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+1}\right)^{n}$. By the n-th root test $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}=\frac{1}{2}$, so it is absolutely convergent.
(h) $\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}}$. By ratio test $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} 2\left(1-\frac{1}{1+n}\right)^{n}=\frac{2}{e}$, so it is absolutely convergent.
(j) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$. By integral test define $f(x)=\frac{1}{x(\ln x)^{p}}$, then for $p \geq 0$ and $x \geq 3, f(x) \geq 0$ and decreasing. Then $\int_{3}^{\infty} f(x) d x=\left.\frac{1}{1-p}(\ln x)^{1-p}\right|_{3} ^{\infty}$ which is finite for $p>1$ and infinite for $p<1$. So the series convergent for $p>1$ and divergent for $0 \leq p<1$. For $p=1$, define $f(x)=\frac{1}{x \ln x}$ and $\int_{2}^{\infty} \frac{1}{x \ln x} d x=\left.\ln \ln x\right|_{2} ^{\infty}$ is infinity, by integral test, the series divergent for $p=1$. For $p<0$, since $\frac{1}{n(\ln n)^{p}}>\frac{1}{n}$, the series is divergent.

Q7[4 pts]: Find the radius of convergence for the following power series.
Proof. (a), $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n} \sqrt{n}}$, by ratio test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{2} \sqrt{\frac{n}{n+1}}=\frac{|x|}{2}$, so radius is $R=2$.
(b), $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{n}$, by ratio test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+2)(2 n+1)}|x|=\frac{|x|}{4}$, so radius is $R=4$.
(c), $\sum_{n=1}^{\infty} \frac{x^{n}}{n \sqrt{n}}$, by n-th root test, $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{|x|}{n^{1 / n^{2}}}=|x|$, so radius is $R=1$.
(d), $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n}(n!)^{2}}$, by ratio test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{x^{2}}{4(n+1)^{2}}=0$, so radius is $R=\infty$.
(e), $\sum_{n=1}^{\infty}\left(\frac{n+2}{n}\right)^{n} x^{n}$, by n-th root test, $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{n+2}{n}|x|=|x|$, so radius is $R=1$.
(f), $\sum_{n=2}^{\infty} \frac{x^{n}}{(\ln n)^{n}}$, by n-th root test, $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{|x|}{\ln n}=0$, so radius is $R=\infty$.
(g), $\sum_{n=1}^{\infty} \frac{n^{n} x^{n}}{n!}$, by ratio test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}|x|=e|x|$, so radius is $R=\frac{1}{e}$.
(h), $\sum_{n=1}^{\infty} \frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$, by ratio test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{2 n+3}|x|=\frac{|x|}{2}$, so radius is $R=2$.

Challenge: For each series in Exercise 8.1/1 above, determine whether it converges at the endpoints $\pm R$ of the interval of convergence, if it is easy to do so.

Proof. (a), At $x=2, \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent. At $x=-2, \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is convergent.
(b), At $x=4, \sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} 4^{n}=\sum_{n=1}^{\infty} \frac{(2 n) \cdot(2 n-2) \cdots 2}{(2 n-1) \cdot(2 n-3) \cdots 1}>\sum_{n=1} 1$ is divergent.

At $x=-4, \sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} 4^{n}(-1)^{n}$ by Raabe's test, it is divergent.
(c), At $x=1, \sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$ is divergent. At $x=-1, \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is divergent.
(e), At $x=1, \sum_{n=1}^{\infty}\left(\frac{n+2}{n}\right)^{n}$ is divergent. At $x=-1, \sum_{n=1}^{\infty}\left(\frac{n+2}{n}\right)^{n}(-1)^{n}$ is divergent.
(g), At $x=\frac{1}{e}, \sum_{n=1}^{\infty} \frac{(n / e)^{n}}{n!}$, by Raabe's test, $\rho_{n}=\frac{1}{2}$, so it is divergent.
(h), Same with (b).

Challenge: Determine, with proof, the radius of convergence of $\sum(\sin n) x^{n}$.
Proof. For $|x|<1$, then $\sum\left|(\sin n) x^{n}\right| \leq \sum\left|x^{n}\right|$ is convergent. For $|x|=1$, as discussed in the Challenge problem of HW $4,\{\sin n\}$ is dense in $[-1,1]$, then define subsequece $a_{m}=|\sin (n)|$, for any n such that $\frac{1}{m+1}<|\sin n|<\frac{1}{m}$, then $\sum|\sin n|>\sum \frac{1}{m}=\infty$. So the radius is 1 .

Completeness: [0/-1 pts].

