ASSIGNMENT 6

Q3[3 pts]: Given an example of a function which is periodic, non-constant, and yet has no minimal period.
Proof. Define f as

$$
f(x)=\left\{\begin{array}{lr}
1, & x \text { is rational, } \\
0, & x \text { is irrational, }
\end{array}\right.
$$

Q4[3 pts]: Show: a periodic increasing function is constant.
Proof. Denote this function by f and assume Λ is the period. For any x, y such that $x<y$, as f is increasing, $f(x) \leq f(y)$; Since f is periodic, $\exists N \in \mathbb{Z}$ such that $y<x+N \Lambda$ and $f(x)=f(x+N \Lambda)$, then $f(x) \leq f(y) \leq f(x+N \Lambda)=f(x)$ which proves $f(x)=f(y)$.

Q6[4 pts]: If you approximate $\ln (1+x)$ by using the first three terms of the series $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$, estimate the error when $0 \leq x \leq 0.1$.
Proof. Define function sequence: $f_{n}(x)=\sum_{k=1}^{n}(-1)^{k-1} \frac{x^{k}}{k}$, then follow the discussion of Cauchy's test in section 7.6 , we can get the same estimate with (15) as

$$
\left|f_{n}(x)-\ln (1+x)\right| \leq \frac{x^{n+1}}{n+1}
$$

by choosing $n=3,\left|f_{3}(x)-\ln (1+x)\right| \leq \frac{10^{-4}}{4}$.
Challenge: Prove that a function which is locally constant on $[0,1)$ is actually constant on $[0,1)$.
Proof. Define S as $S=\sup \{a<1: f(x)$ is constant on $[0, a)\}$, if $f(x)$ is not constant on $[0,1)$, then $S<1$. However, by the definition of $S, \forall \delta>0, \exists x$ where $0<x-S<\delta$ such that $f(x) \neq f\left(S-\frac{\delta}{2}\right)$ which is contradict to $f(x)$ is locally constant.

Completeness: [0/-1 pts].

