ASSIGNMENT 8

Q3[3 pts] (Exercise 14.3.3 on p. 207.): Let $f(x)$ be a polynomial of degree n. a) What is the maximum number of critical points $f(x)$ can have? For each n, give an example, with proof, of a polynomial having the maximum number for that n. b) Answer the same question with "maximum" replaced by "minimum".

Proof. a) For $n>1$, at most, $f(x)$ can have $n-1$ critical points. For example, for each n, define $f(x)=(x-1) \ldots(x-n)$; As $f(i)=0$ for $i=1,2, \ldots, n$, by Rolle's rule, $\exists \xi_{i} \in[i, i+1]$, for $i=1, \ldots, n-1$, such that $f^{\prime}\left(\xi_{i}\right)=0$ which completes the proof.
b) If n is odd, then the minimum number of critical points is 0 ; If n is even, then the minimum number is 1 . For example, for $n=2 m+1$, define $f(x)=x^{2 m+1}+x$, then $f^{\prime}(x)=(2 m+1) x^{2 m}+1>0$ which shows that it has no critical points. For $n=2 m$, then for $x \rightarrow+\infty$ and $x \rightarrow-\infty, f(x)$ either tends to $+\infty$ or $-\infty$. Then there exists points x_{1}, x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, by mean value theory, $\exists \xi \in\left[x_{1}, x_{2}\right]$ such that $f^{\prime}(\xi)=0$. So at least $f(x)$ has one critical points. For example $f(x)=x^{2 m}$.

Q6[3 pts](Exercise 15.2.1):
a) Prove that if $f^{\prime}(x)$ is bounded on a finite interval I, then $f(x)$ is bounded on I. Is it true if "finite" is omitted?
b) Show that the converse is false.

Proof. a) As $f(x)$ is differentiable on I, at least exist $a \in I$ such that $f(a)$ is bounded. Then by mean value theory, for any $x \in I$, exists $c_{x} \in I$ such that $|f(x)|=\left|f(a)+f^{\prime}\left(c_{x}\right)(x-a)\right| \leq$ $|f(a)|+\left|f^{\prime}\left(c_{x}\right) \| x-a\right|$, as both $f^{\prime}(x)$ and I is finite, so $f(x)$ is bounded in I. If the "finite" is omitted, then it is not true. For example, $f(x)=x$ and $I=\mathbb{R}$.
b) For example $f(x)=\sqrt{x}, \mathrm{I}=(0,1]$.

Q8[4 pts](Exercise 16.2.2): Assume $f(x)$ is differentiable on I; prove that if $f(x)$ is geometrically convex, then it is convex.

Proof. For any $a<b$, by definition of geometrical convexity, $\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a}$ for any $a<x<b$ in I. Then

$$
\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(x)}{b-a}-\frac{f(x)-f(a)}{b-a} \Rightarrow \frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(x)}{b-x} .
$$

By letting $x \rightarrow a^{+}, f^{\prime}(a) \leq \frac{f(b)-f(a)}{b-a}$; by letting $x \rightarrow b^{-}, \frac{f(b)-f(a)}{b-a} \leq f^{\prime}(b)$. Then $f^{\prime}(a) \leq f^{\prime}(b)$ shows $f^{\prime}(x)$ is increasing, by first derivative test for convexity, $f(x)$ is convex.

Challenge: (Exercise 15.3.2): Let f and g be continuous on $[a, b]$ and differentiable on (a, b). Then there is a point $c \in(a, b)$ such that

$$
\begin{equation*}
f^{\prime}(c)[g(b)-g(a)]=g^{\prime}(c)[f(b)-f(a)] . \tag{0.1}
\end{equation*}
$$

a) Deduce the two Mean-Value Theorems in the text (Theorem 15.1 and 15.3) from this formulation.
b) Prove (0.1) by applying the Mean-Value theorem to

$$
F(t)=f(t)[g(b)-g(a)]-g(t)[f(b)-f(a)] .
$$

Proof. (a), Let $g(x)=x$, then $g^{\prime}(x)=1$, plug it back to (0.1) prove Theorem 15.1. Assume $g^{\prime}(t) \neq 0$ on (a, b), and $g(b) \neq g(a)$, then

$$
f^{\prime}(c)[g(b)-g(a)]=g^{\prime}(c)[f(b)-f(a)] \Rightarrow \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} .
$$

(b), $F(a)=f(a) g(b)-f(a) g(a)-g(a) f(b)+g(a) f(a)=f(a) g(b)-g(a) f(b)$ and $F(b)=f(b) g(b)-$ $f(b) g(a)-g(b) f(b)+g(b) f(a)=g(b) f(a)-f(b) g(a)$. Then $F(a)=F(b)$, by Rolle's rule, $\exists c \in(a, b)$ such that $F(c)=f(c)[g(b)-g(a)]-g(c)[f(b)-f(a)]=0$.

Challenge: (Exercise 16.2.4):
a) Let $f(x)$ be geometrically concave on I, and $a, b \in I$. Show the value of $f(x)$ at the average of a and b is \geq the average of $f(a)$ and $f(b)$. b) Prove the arithmetric-geometric mean inequality: $\sqrt{a b} \leq(a+b) / 2$.
Proof. a), by definition of geometrically concave $\frac{f(x)-f(a)}{x-a} \geq \frac{f(b)-f(a)}{b-a}$ for any $a<x<b$ in I, take $x=\frac{a+b}{2}$, then

$$
\frac{f\left(\frac{a+b}{2}\right)-f(a)}{\frac{b-a}{2}} \geq \frac{f(b)-f(a)}{b-a} \Rightarrow 2 f\left(\frac{a+b}{2}\right)-2 f(a) \geq f(b)-f(a) \Rightarrow f\left(\frac{a+b}{2}\right) \geq \frac{f(a)+f(b)}{2} .
$$

b). Let $f(x)=\ln (x)$, then $f^{\prime}(x)=\frac{1}{x}$ is decreasing for $x>0$, then $f(x)$ is concave, then it is geometrically concave. By the result of (a),

$$
f\left(\frac{a+b}{2}\right) \geq \frac{f(a)+f(b)}{2} \Rightarrow \ln \frac{a+b}{2} \geq \frac{1}{2} \ln a b .
$$

As $\ln x$ is increasing for $x>0$, so $\frac{a+b}{2} \geq \sqrt{a b}$.
Completeness: [0/-1 pts].

