ASSIGNMENT 9

[3 pts] Q2 17.3-3: You want to estimate $\sin x$ to three decimal places over $|x|<0.5$. How large should n be in order that the n-th order Taylor polynomial give you this accuracy over the given interval?
Proof. Since $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$. By Cauchy's test for alternating series,

$$
\left|s_{n}-\sin x\right|<\left|\frac{x^{2 n+1}}{(2 n+1)!}\right|<\left|\left(\frac{1}{2}\right)^{2 n+1} \frac{1}{(2 n+1)!}\right|, \quad \text { for }|x|<0.5,
$$

Then $n=2$ is enough to make the error less then 10^{-3}, which corresponding to order equals to 5 , since the coefficient with order 4 is zero, so 3rd order Taylor polynomial is enough.
[3 pts] Q4 18.3-2: Prove directly from the definition of integrability: on an interval [a,b], if $f(x)$ is differentiable and $f^{\prime}(x)$ is bounded, then $f(x)$ is integrable.
Proof. Assume $\left|f^{\prime}(x)\right|<M$, for any $\epsilon>0$, let $\delta<\frac{\epsilon}{M(b-a)}$, then for any \mathscr{P} such that $|\mathscr{P}|<\delta$,

$$
\left|L_{f}(\mathscr{P})-U_{f}(\mathscr{P})\right| \leq \sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i} \leq \sum_{i=1}^{n}\left|f^{\prime}\left(\xi_{i}\right)\right| \Delta x_{i} \Delta x_{i} \leq M \delta(b-a)<\epsilon
$$

[4 pts] Q6 19.2-1: Evaluate $\int_{0}^{1} e^{x} d x$ directly, by using (8) applied to the upper sums taken over the standard n-partition.
Proof. Let partition $\mathscr{P}_{n}=\left\{\frac{i}{n}\right\}_{i=0}^{n}$.

$$
\lim _{n \rightarrow \infty} U\left(\mathscr{P}_{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} e^{\frac{i}{n}} \frac{1}{n}=\lim _{n \rightarrow \infty} e^{1 / n} \frac{1-e}{1-e^{1 / n}} \frac{1}{n}=e-1 .
$$

Challenge: Let $f(x)=e^{-1 / x^{2}}$. Show that $f^{(n)}(0)=0$ for all n.
Proof. Statement: for any n, the n-th order derivative of $f(x)$ has form as $f^{(n)}(x)=e^{-1 / x^{2}} \sum_{i=2+n}^{3 n} a_{i}^{(n)} \frac{1}{x^{i}}$ for some constant $a_{i}^{(n)}$. Prove it by induction, for $n=1, f^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}$ holds; Assume it also holds for $n=k$, which is $f^{(k)}(x)=e^{-1 / x^{2}} \sum_{i=2+k}^{3 k} a_{i}^{(k)} \frac{1}{x^{i}}$. then for $n=k+1$

$$
f^{(k+1)}(x)=e^{-1 / x^{2}} \frac{2}{x^{3}} \sum_{i=2+k}^{3 k} a_{i}^{(k)} \frac{1}{x^{i}}+e^{-1 / x^{2}} \sum_{i=2+k}^{3 k}-i a_{i}^{(k)} \frac{1}{x^{i+1}}=e^{-1 / x^{2}} \sum_{i=2+k+1}^{3 k+3} a_{i}^{(k+1)} \frac{1}{x^{i}},
$$

which prove the statement.
Since for any $n, f^{(n)}(x)$ has finite terms, and by L'Hospital rule, when $x \rightarrow 0$, all its terms have limitation to 0 , then complete the proof.

Completeness: [0/-1 pts].

