MATH 490, WORKSHEET \#10 WEDNESDAY, APRIL 17

Problem 1, Putnam 1954. Let N be a set with an odd number of elements. Let f : $N \times N \rightarrow N$ satisfy $f(x, y)=f(y, x)$ and $\{f(x, y): y \in N\}=N$. Show that $\{f(x, x): x \in$ $\mathrm{N}\}=\mathrm{N}$.

Problem 2, Putnam 1984.Let $f(n)=1!+2!+\cdots+n!$. Show $f(n+1)=a(n) f(n)+$ $b(n) f(n-1)$ for some polynomials a, b.

Problem 3, Putnam 2014. Let $A=\left(A_{i j}\right)$ be the $n \times n$ matrix

$$
A_{i j}=\frac{1}{\min (i, j)}
$$

for $1 \leqslant i, j \leqslant n$. Compute $\operatorname{det}(A)$.

Problem 4, VTRMC 2017. Let P be an interior point of a triangle of area T. Through the point P, draw lines parallel to the three sides, partitioning the triangle into three triangles and three parallelograms. Let a, b, and c be the areas of the three triangles. Prove that $\sqrt{T}=\sqrt{a}+\sqrt{b}+\sqrt{c}$.

Problem 5, VTRMC 2015. Consider the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$. Prove that every positive rational number can be obtained as an unordered partial sum of this series. (An unordered partial sum may skip some of the terms $\frac{1}{k}$.)

Problem 6, Putnam 1969. If G is a finite group, show that G cannot be written as the union of two proper subgroups. Can G be written as the union of three proper subgroups?

Problem 7, ICMC 2016. Let G be a group which satisfies $(g h)^{3}=g^{3} h^{3}$ and such that $\mathrm{g}^{3}=e$ implies $\mathrm{g}=e$. Show that $\mathrm{g} \mapsto \mathrm{g}^{3}$ is a bijection if G is finite.

