MATH 490, WORKSHEET \#3 WEDNESDAY, FEBRUARY 20

Problem 1. Show the following identities for the Fibonacci numbers $F_{0}=1, F_{1}=$ $1, \ldots, F_{m}, \ldots$
(1) $F_{0}+\cdots F_{n}=F_{n+2}-1$.
(2) $F_{0}-F_{1}+F_{2}-F_{3}+\cdots-F_{2 n-1}+F_{2 n}=F_{2 n-1}-1$.
(3) $F_{0}^{2}+F_{1}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.
(4) $F_{n-1} F_{n+1}=F_{n}^{2}+(-1)^{n}$.
(5) $F_{m+n}=F_{m+1} F_{n}+F_{m} F_{n-1}$.
(6) If $m \mid n$ then $F_{m} \mid F_{n}$.

$$
\text { Hint on last two: Let } A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \text { and show } A^{n}=\left(\begin{array}{cc}
F_{n} & F_{n-1} \\
F_{n-1} & F_{n-2}
\end{array}\right)
$$

Problem 2. You are given 7 line segments of lengths at least 1 unit and at most 10 units. Show that three may be found that can form the sides of a triangle.

Problem 3, Putnam 1996. A selfish subset of $\{1, \ldots, n\}$ is a subset which contains it cardinality as an element. For instance $\{1,3,10\}$ and $\{4,7,8,9\}$ are selfish. Find the number of minimal selfish subsets of $\{1, \ldots, n\}$. Minimal means no proper subset is selfish.

Problem 4, Putnam 2000. Show that there are infinitely many integers n such that n, $n+1$, and $n+2$ are each sums of two squares.

Problem 5, ICMC 1983. Let p be a prime and a_{1}, \ldots, a_{p} a list of integers which are not necessarily distinct or arranged in order. Show that there are $1 \leqslant m<n \leqslant p$ so that $p \mid a_{m}+\cdots+a_{n}$.

Problem 6, ICMC 1978. Let k be odd. Define

$$
S(n)=\sum_{i=1}^{n} i^{k}
$$

Show that $(n+1) \mid 2 S(n)$. Hint: use that $(a+b) \mid\left(a^{k}+b^{k}\right)$.

Problem 7, ICMC 1976. If $12 \mid(n+1)$ then $12 \mid \sum_{a \mid n} a$. Hint: show that there are prime factors p and q of n such that $p=5 \bmod 6$ and $q=3 \bmod 4$.

Problem 8, ICMC 2005. If 25 divides $x^{5}+y^{5}+z^{5}$, it divides at least one of $x^{5}+y^{5}, y^{5}+z^{5}$ or $x^{5}+z^{5}$.

