MATH 490, WORKSHEET \#5 WEDNESDAY, MARCH 6

Problem 1, ICMC 2012. How many zeroes does the number 213! start with?
Problem 2, Putnam 1968 Show that $\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=22 / 7-\pi$.
Problem 3, Putnam 1971. Find all functions which satisfy the identity $f(x)+f\left(1-\frac{1}{x}\right)=$ $1+x$ for all $x \neq 0,1$.

Problem 4, ICMC 2016. Describe all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying: (a) $f(2)=2$; (b) $f(m n)=f(m) f(n)$; and $(c) f(m)>f(n)$ if $m>n$ for all $m, n \in \mathbb{Z}$.

Problem 5, ICMC 2012. If $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ is a polynomial with integer coefficients and a_{0}, a_{1}, a_{n}, and $a_{2}+\cdots+a_{n}$ are all odd, then $p(x)$ has no rational root.

Problem 6, ICMC 2016. Find 8 points in 3-space such that all 56 triples of points form isosceles triangles.

Problem 7. ICMC 2015. f is a twice differentiable function $f(0)=f^{\prime}(0)=0$ and $f(1)=1$, then there is $0<a<1$ so that $f^{\prime}(a) f^{\prime \prime}(a)=9 / 8$.

Problem 8, Putnam 1973. Let S consist of $2 n+1$ (possibly not distinct) integers for some n. S has the property that removing any member, the remaining can be divided into two sets of n with the same sum. Show that the numbers belonging to S are all equal.

