MATH 490, WORKSHEET \#8 WEDNESDAY, APRIL 3

Problem 1, ICMC 2018. Let a_{1}, \ldots, a_{n} be positive real numbers. If $a_{1}^{\chi}+a_{2}^{\chi}+\cdots+a_{n}^{x} \geqslant n$ for all real numbers x, show that $a_{1} a_{2} \cdots a_{n}=1$.

Problem 2, ICMC 1995. If $n \geqslant 1$ is an integer, show that

$$
1 \cdot 2^{2} \cdot 3^{3} \cdots n^{n}<\left(\frac{2 n+1}{3}\right)^{n(n+1) / 2} .
$$

Problem 3, Putnam 2016. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a function so that

$$
f(x)+f\left(1-\frac{1}{x}\right)=\arctan (x)
$$

Compute $\int_{0}^{1} f(x) d x$.
Problem 4, VTRMC 2002. Find rational numbers a, b, c, d, e so that

$$
\sqrt{7+\sqrt{40}}=a+b \sqrt{2}+c \sqrt{5}+d \sqrt{7}+e \sqrt{10} .
$$

Problem 5, VTRMC 2009. Is there a twice differentiable function such that $f^{\prime}(x)=$ $f(x+1)-f(x)$ for all x and $f^{\prime \prime}(0)>0$?

Problem 6, Putnam 2014. Show that every coefficient of the Taylor expansion of ($1-$ $\left.x+x^{2}\right) e^{x}$ about 0 is rational and the numerator is either 1 or a prime number.
Problem 7, ICMC 2011. Find a function $f: \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\}$ so that for each $y \in \mathbb{R} \backslash\{0\}$ there is exactly one $x \in \mathbb{R}$ with $f(x)=y$.

Problem 8, ICMC 2015. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $f^{(n)}$ exists for all n. If f has infinitely many zeroes in $[0,1]$ show that there is a point $x \in[0,1]$ so that $f^{(n)}(x)=0$ for all n. Give an example of such a function which is nonconstant on every interval.

