MATH 490, WORKSHEET \#9 WEDNESDAY, APRIL 10

Problem 1, Putnam 1961. The set of pairs of positive real numbers (x, y) such that $x^{y}=y^{x}$ form a straight line $y=x$ and a curve. Find the point at which the curve intersects the line.

Problem 2, Putnam 2009. Let $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function so that for every square in plane with vertices $A, B, C, D, f(A)+f(B)+f(C)+f(D)=0$. Is is true that $f(P)=0$ for all points in the plane?

Problem 3, Putnam 2003. Given n, how many ways can we write it as a sum of one or more positive integers $a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{k}$ with $a_{k} \leqslant a_{1}+1$?.

Problem 4, Putnam 1967. Find the smallest positive integer n such that we can find a polynomial $n x^{2}+a x+b$ with integer coefficients and two distinct roots in the interval $(0,1)$.

Problem 5, Putnam 2008. Find the radius of a largest circle contained in the fourdimensional hypercube.
Problem 6, Putnam 1994. For which real numbers α does the graph of

$$
y=x^{4}+9 x^{3}+\alpha x^{2}+9 x+4
$$

contain four collinear points?

Problem 7, Putnam 2014. A sequence (a_{n}) of non-negative reals satisfies $a_{n+m} \leqslant$ $a_{n} a_{m}$ for all positive integers m, n. Show that $\lim _{n \rightarrow \infty} a_{n}^{1 / n}$ exists.
Problem 8, Putnam 1985. G is a finite group consisting of real $n \times n$ matrices under the operation of matrix multiplication. If the sum of the traces of the elements of G is zero, show that the sum of the elements of G is the zero matrix.

