MATH 490, WORKSHEET \#1 WEDNESDAY, JANUARY 15, 2020

Problem 1, Larson. A set X has a binary operation $*$ satisfying the following two properties: (1) $x * x=x ;(x * y) * z=(y * z) * x$ for all x, y, z in X. Show that $x * y=y * x$ for all x, y in X.

Problem 2, Larson. Find n and positive numbers s_{1}, \ldots, s_{n} so that $s_{1}+\cdots s_{n}=1000$ and $s_{1} \cdots s_{n}$ is maximized.

Problem 3, Putnam 2009. Let f be a real-valued function on the plane such that for every square $A B C D$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plane?

Problem 4, Putnam 2002. Given any five points on a sphere, show that four of them must lie on a closed hemisphere.

Problem 5, Folklore. In any group of six people there are either three mutual acquaintances or three mutual strangers.

Problem 6, ${ }^{*}$. Find the maximum value of $\sin ^{4}(x)+\cos ^{4}(x)$.

Problem 7, Folklore Give a function $\mathrm{F}(\mathrm{n})$ which describes the maximum number of regions that n straight lines divide the plane.

Problem 8, . If r is a number such that $r+1 / r$ is an integer, show that $r^{n}+1 / r^{n}$ is also an integer for all $n=1,2, \ldots$.

Larson = L.C. Larson, "Problem-Solving Through Problems," Springer, 1983.

* $=$ https://sites.math.northwestern.edu/~mlerma/problem_solving/putnam/training. html

