MATH 490, Worksheet \#10, Wednesday, April 1, 2020

Problem 1. If a, b, c are positive integers and $a^{2}+b^{2}=c^{2}$ show that 3 divides $a b$.

Problem 2. How many zeros does 1000 ! end in?

Problem 3, Engel. Three siblings inherit n diamonds with weights $1, \ldots, n$ carats. For which values of n may the diamonds be split evenly?

Problem 4. Find all primes of the form $n^{4}+4^{n}$.
Problem 5, Putnam 1988 If $n \geqslant 3$ is no prime show that there are positive integers a, b, d so that $n=a b+b c+c a+1$.

Problem 6. Show that there are infinitely many primes of the form $4 n+3$.
Problem 7. Show that $1+\frac{1}{2}+\cdots+\frac{1}{n}$ is not an integer for all $n \geqslant 2$.
Problem 8, Zeitz. Show any integer greater than 7 is a sum of two relatively prime integers greater than 1.

Problem 9. Show that the only non-negative integer solutions of $3^{x}+4^{y}=5^{z}$ are $(0,1,1)$ and $(2,2,2)$.

Problem 10. Show that $\left\lfloor 10^{n} \pi\right\rfloor$ ends in 2 for infinitely many n.
Engel = A. Engel, "Problem Solving Strategies," Springer, 1997., Zeitz = P. Zeitz, "The Art and Craft of Problem Solving" 2 ed. Wiley, 2007.

