MATH 490, Worksheet \#5, Wednesday, February 12, 2020

Problem 1, Engel. Six points are spaced evenly on a circle. These points are labeled $1,0,1,0,0,0$ clockwise. You may increase or decrease any two neighboring numbers each by 1 . Is there a way to equalize all the numbers?

Problem 2, Zeitz. A room is initially empty. During each minute either one person enters or two people leave. After 3^{2020} minutes can there be exactly $3^{212}+2$ people in the room?

Problem 3, Zeitz. Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{2019}$ be distinct points in the plane. Consider the line segments $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{P}_{2} \mathrm{P}_{3}, \ldots, \mathrm{P}_{2018} \mathrm{P}_{2019}, \mathrm{P}_{2019} \mathrm{P}_{1}$. Can a line be drawn in the plane that intersects the interior of each line segment?

Problem 4, Engel. For $a<b$ define sequences by $x_{0}=a, y_{0}=b$,

$$
x_{n+1}=\frac{x_{n}+y_{n}}{2}, y_{n+1}=\frac{2 x_{n} y_{n}}{x_{n}+y_{n}} .
$$

Find $\lim _{n \rightarrow \infty} x_{n}$.

Problem 5, ICMC 1967. Let n be odd. If $\left(a_{i j}\right)$ is a symmetric $n \times n$ matrix $\left(a_{i j}=a_{j i}\right.$ for all i, j) such that each row is a permutation of $(1, \ldots, n)$, then so is the main diagonal.

Problem 6, Engel. A rectangular floor is covered by 2×2 and 1×4 tiles. If one tile is smashed and replaced with one of the other kind, show that the tiles cannot be rearranged to cover the floor.

Problem 7, Engel. A $(2 n+1) \times(2 n+1)$ board has one square cut from a corner. For which values of n can the resulting shape be tiled with 2×1 tiles half of which are horizontal?

Problem 8, de Bruijn. A rectangle is tiled by smaller rectangles so that each of the smaller rectangles has a side of integral length. Show that the large rectangle must also have a side of integral length.
de Bruijn = https://en.wikipedia.org/wiki/Nicolaas_Govert_de_Bruijn
Engel = A. Engel, "Problem Solving Strategies," Springer, 1997.
ICMC = Indiana Collegiate Mathematics Contest. http://sections.maa.org/indiana/ ICMC.php
Zeitz = P. Zeitz, "The Art and Craft of Problem Solving" 2 ed. Wiley, 2007.

