MATH 490, Worksheet \#9, Wednesday, March 25, 2020

Problem 1, Zeitz. For which integer n is $\frac{1}{n}$ closest to $\frac{1}{\sqrt{1,000,000}}-\frac{1}{\sqrt{999,999}}$
Problem 2. Minimize

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

among all positive numbers x, y, z with $x+y+z=1$.
Problem 3. Minimize

$$
\sum_{i=1}^{n} \frac{1}{a_{i}}
$$

among all positive a_{1}, \ldots, a_{n} with $a_{1}+\cdots+a_{n}=1$.
Problem 4. Show that

$$
\frac{1}{2 \sqrt{n}}<\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2 n-1}{2 n}<\frac{1}{\sqrt{2 n}}
$$

Problem 5. Zeitz Let a_{1}, \ldots, a_{n} be positive numbers and b_{1}, \ldots, b_{n} be a permutation of the first sequence. Minimize

$$
\frac{a_{1}}{b_{1}}+\cdots+\frac{a_{n}}{b_{n}}
$$

Problem 6. Putnam 2003. Let $p(x)=a x^{2}+b x+c$ and $q(x)=A x^{2}+B x+C$ be quadratic polynomials (so $a, A \neq 0$). Suppose q has at least one real root. If $|p(x)| \leqslant|q(x)|$ for all x, show $\left|b^{2}-4 a c\right| \leqslant\left|B^{2}-4 A C\right|$. (This is actually still true if q has no real roots.)

Problem 7, Putnam 2003. For $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ positive show that

$$
\left(a_{1} \cdots a_{n}\right)^{1 / n}+\left(b_{1} \cdots b_{n}\right)^{1 / n} \leqslant\left(\left(a_{1}+b_{1}\right) \cdots\left(a_{n}+b_{n}\right)\right)^{1 / n} .
$$

Problem 8, Zeitz. Show that for x, y, z positive with $x y z=1$ that

$$
\frac{x^{2}}{y+z}+\frac{y^{2}}{x+z}+\frac{z^{2}}{x+y} \geqslant \frac{3}{2} .
$$

Activity, Cauchy. Think about how to use that $\frac{a+b+c+d}{4} \geqslant(a b c d)^{1 / 4}$ for any a, b, c, d positive to show that $\frac{x+y+z}{3} \geqslant(x y z)^{1 / 3}$ for all x, y, z positive. Use induction to show that the Arithmetic Mean-Geometric mean inequality is valid when taking the mean of 2^{n} and try to extend this reasoing to prove the general case.
Cauchy =https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
Zeitz = P. Zeitz, "The Art and Craft of Problem Solving" 2 ed. Wiley, 2007.

