(define driving-rules
'

((?? right turn ?? red

("Yes, but you must
((?? right turn ??)

("Move into the righ
((?? Teft turn ??)

("Move into the left
((?? turn ??)

("You must signal be
((?? pass ?? hill ??)
("You can pass when

((?? pass ?77)
("Always pass in the

((?? pedestrian ?7?)
("Yield. The pedestr

((?? class ?a ??)

("See the booklet GE]

CEED)
("Sorry, I don’t und
))
(define match?
(lambda (pattern goal)
(match-helper pattern
(define match-helper
(lambda (pat targ answe
(cond
((null1? pat)
(make-answer-

(patﬁeﬁnivariab1e?
(if (agrees-with?

Bnswer #f an
ch-arbitrary
(lambda (pat targ answe
(Gf (null? targ)
(make-answer (null?

(let ((new-ans Qéﬁf’*

(if new-ans
new-ans
(match-arbitrar

(define make-answer _

The

L E—
0
1 :
1
i
i
)
t

Vincent S. Manis » James J. Little

The

SCHEMATICS
of

COMPUTATION

Vincent S. Manis
Langara College

James]. Little
University of British Columbia

An Alan R. Apt Book—r=

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Manis, Vincent S. . . . o
The schematics of computation / Vincent S. Manis, James J]. Little

p. cm.

"An Alan R, Apt book.")
Includes bibitiographical references and index.
ISBN 0-13-834284-9

1. Scheme (Computer program language) I. Little, lames J.
QA7 T1§l§§4M36 1995
QA76.73.
005.13"3--dc20 94-21432

CIP

Publisher: Alan Apt

Project Manager: Mona Pompili
Developmental Editor: Sondra Chavez
Cover Designer: DeFranco Design Inc.
Copy Editor: Nick Murray

Production Coordinator: Lori Bulwin
Supplements Editor: Alice Dworkin
Editorial Assistant: Shirley McGuire

About the cover: Those who have advanced the sciences and arts have always used
“schematic” methods to show their ideas. Christopher Wren's design for St Paul’s Cathe-
dral in London, Isaac Newton's retlector telescope, and Johann Sebastian Bach's score for
the Goldberg Variations are all shown here in schematic form. Our computer programs
are inspired by the schematic flavor of these works.

© 1995 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this
book. These efforts include the development, research, and testing of the theories and
programs to determine their effectiveness. The author and publisher shall not be liable
in any event for icidental or consequential damages in connection with, or arising out
of, the furnishing, performance, or use ot these programs.

All trademarks are the property of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

w 9 & 7 &5 &4 3 2 1

ISBN D0-13-834284-9

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda. Rio de Janeiro

Preface

The best laid schemes o’ mice an’ men
Gang aft a-gley. — Robert Burns, “To a Mouse”

Students need an introductory course in computer science that exposes them to
all of computer science. Computer science is not just about programming tech-
niques. It rests on deep ideas and the nature of computation. We want students to
understand these deep ideas, as well as grasp the practicality of computation and
experience the pleasure of computing.

We wrote The Schematics of Computation for one reason—we wanted a book
that presents the fundamental ideas of computer science in a way that students can
understand. Introductory books in other fields such as physics introduce the areas
of the field (mechanics, electricity and magnetism, and optics), while introductory
computer science books often have chapters on how to use two-dimensional arrays.

We resolved to write a book that not only gives students essential program-
ming skills, but also provides a vision of what computer science is about. We want
to reach those individuals who are already committed to computer science, as well
as those who plan to take computer science courses as part of a general education.
We hope our enthusiasm for the field will encourage students to pursue advanced
studies in computer science.

History and Objectives

This book had its genesis in a 1988 decision of the Department of Computer Sci-
ence at the University of British Columbia to revitalize its introductory courses. A
Scheme-based approach was adopted, and one of the authors (Little) set about teach-
ing a prototype two-course sequence in 1989-90, using Abelson and Sussman’s
Structure and Interpretation of Computer Programs. We decided that we wanted a
broader coverage of CS than Abelson and Sussman offers.

Since 1990, drafts of this book have been used at UBC, Langara, University
College of the Okanagan, and the University College of the Cariboo, all in British
Columbia, as well as at the University of Saskatchewan in Saskatoon, Saskatchewan.
More recently, the book has been adopted by the University of Kansas and Vassar
College.

Our model has been heavily influenced by the interim report of the ACM Task
Force on the Core of Computer Science (CACM, January, 1989) and also by the ACM
Curriculum '91 document.

The ACM Task Force Report identifies a number of areas in computer science,
and develops three modes in which each of these areas can be studied, roughly
corresponding to program design and implementation, empirical experimentation,
and theoretical underpinnings. We have found this framework to be a useful way
of designing a course that is effective in the classroom.

As we began planning this book, we identified scveral goals it had to satisfy.

o Whereas most texts give primary emphasis to programming skills, we give

substantial weight to the analysis of programs and development of con-
ceptual frameworks. We do not wish to shortchange the skills component
of an introductory course. In fact, employers of students who have stud-
ied this material have told us that the students are stronger programmers
than those who have taken the conventional Pascal course. However, we

viii

Preface

also want students to learn how to read programs and understand critical
issues such as efficiency.

The introductory course sequence offers a chance to recruit students into
computer science. It should therefore offer a view of the questions a com-
puter scientist studies, and the modes of inquiry that she or he would use.
Even for students who plan no further studies in the field, we believe that
a broad introduction to the ideas of computer science provides a strong
foundation for acquiring further computing skills, as well as sKills in other
areas.

Although it would be impossible to cover all of the areas identified by the
ACM Task Force, we have given attention to important areas of computer
science that are not studied in the traditional CS1/CS2 sequence. Databases,
artificial intelligence, and logic programming are the most obvious exam-
ples.

We wanted to show that a small number of powerful ideas underlies much
of computer science, just as concepts such as “force” and “energy” underlie
physics. We present a model of computation that can be used not only for
Scheme, but for almost all languages.

We wanted a presentation that was accessible to the average university or
college student, requiring only Grade 12 mathematics.

Key Differences From Conventional Approaches

There are six ways in which this book differs from conyventional introductions.

Features if necessary, but not necessarily features

Our philosophy is deliberately minimalist—we avoid introducing new fea-
tures or concepts until they are absolutely necessary. This approach applies
to our presentation of both the programming language and the applica-
tions.

Theory and Practice

We strongly believe in balancing theory and practice, and only presenting
theory that is directly useful in solving problems. Fach theoretical topic
grows out of a practical problem that is being solved.

Experiential Learning

We emphasize learning by doing. This emphasis can be seen in the hun-
dreds of exercises included in the book. These exercises have one major
purposc —students shoutd not read more than a page or two without being
asked to apply what has been learned. ‘The Laboratory Manual consists of
a set of labs that ask students to apply a concept that has been covered in
class.

System Prototypes

We tollow a schematic approach by presenting prototypes of real, working
software systems. It is not feasible for students to study a real relational
database system or inference engine in an introductory course. But it is
possible for students to understand a simplified database or inference en-
gine. Our goal is not to study all of the complexity of the “real” versions
of these systems. Instead, we want students to understand what such a
system does, and the basic principles that underlie its implementation.

Preface ix

Broad View of Field

We present a rich, broad view of computer science. An introductory text is
not a closed universe, but a starting-point. Sidebars present relevant appli-
cations, software tools, theoretical questions, and social issues.

Case Studies

The Case Studies located at the end of the chapters present extended ex-
amples of how software is developed and how it can be used to solve
interesting, practical problems. Case Studies provide additional program-
ming examples and demonstrate how the techniques covered in chapters
have further application. We have chosen applications across a wide va-
riety of endeavors including simulation, airline route planning, personal
schedule planning, and client/server computing.

Instructional Support

The book is only a part of the comprehensive package we have developed to support
the course. This package includes:

e A Laboratory Manual with approximately thirty different lab assignments

keyed to the text, along with sidebars on such practical topics as debugging
code.

An Instructor’s Guide that describes the pedagogy for each section of the
book, as well as providing a number of resources such as a detailed Scheme
manual and a tutorial on C++ for Schemers that can be distributed to stu-
dents.

A Software Package that includes a Microsoft Windows-based Scheme sys-
tem, code to adapt other common Scheme systems to support this book,
and all of the programs studied or used in the text or lab manual. The Soft-
ware Package is provided in disk form with the Instructor’s Guide, or it can
be obtained in electronic form from the Internet (see Page xvi for details).
The Internet version is preferred, because it may incorporate bug fixes and
additions which have not yet reached the published version.

Choice of Programming Language

Almost nothing can arouse more controversy than the choice of introductory pro-
gramming language (except perhaps which is the best text editor). Our approach is
soundly based upon A-calculus models that have been realized in many languages,
and provide simple, consistent semantics. We have chosen to use Scheme, a lexically-
scoped dialect of Lisp. Our choice was governed by several factors:

minimal syntax to make learning fairly easy

procedures as first-class objects

support for a wide variety of programming paradigms including functional,
imperative, object-oriented, and logic programming

list processing capabilities (i.e., garbage collection)

reasonably standardized implementations, especially for MS-DOS, Windows,
Macintosh, and UNIX platforms

Even though Abelson and Sussman’s Structure and Interpretation of Computer
Programs influenced many of the ideas we explore, we certainly did not feel bound

Preface

to use Scheme. Most other languages are bound too tightly to a single computational
paradigm to be suitable for some of the areas we proposed to explore. In particular,
our study of evaluators would have been seriously complicated if we had used a
language with a great deal of syntax. The bottom line is that Scheme is a simple
language that can be used in many interesting ways, and also allows us to produce
sophisticated, complex software systems.

What about using a functional language? Most functional languages enforce a
functional paradigm everywhere, whether or not it is appropriate. We agree that a
database system can be modeled in a purely functional way, but don’t agree that an
introductory student will find such a model convincing. One outstanding exception,
supporting all the paradigms we study in this book, is ML. The first six chapters
of our book would suffer almost no changes if ML were used instead of Scheme.
ML’s syntax would most definitely complicate our discussion of evaluators. Most
functional languages, including ML, have elaborate type systems. However useful
these type systems may be to the experienced programmer, they are substantial
barriers to the introductory student, and hence destroy the concept of a simple
underlying model.

What about using an object-oriented language? We renew our objections to
single-paradigm languages. More importantly, we want students to see that the lan-
guage we study is well-founded (in a logic sense). It is easier to understand objects
in terms of procedures and state than the reverse.

What about using an imperative, more “conventional” language like Pascal,
Modula-2, or C++ as our teaching vehicle? Everything we do in this book could be
done in one of these languages, though perhaps with great difficulty. Procedures
as first-class citizens, and garbage collection make code much more perspicuous.
We do not deny the importance of these languages (especially C++) for building
sophisticated applications. However, we think that learning Scheme helps a student
learn one of these languages.

We believe the ideas behind Scheme are not just academic curiosities, but
are immensely practical. Scheme and Scheme-like languages have some industrial
application. Further, many newer languages, ranging from ML and PostScript to
NewtonScript and Dylan, use concepts that Scheme elegantly demonstrates. Scheme
is already widely used as an introductory programming language.

Coverage and Topics

Although we were inspired by Abelson and Sussman's book, we chose different
topics and a different organization. We include a sequence of topics that makes
sense to students, provides strong programming skills, and gives a coherent picture
of the field. We therefore adopted the following structure.

 Introduction to Programming (Chapters 1 through 3)

— basic data types and programming concepts
— computation as substitution

— procedures and procedural abstraction

— recursion

— algorithmic complexity

— distinction between value and effect

— program organization

— data abstraction

Preface xi

e List Processing (Chapter 4)

— pairs and symbols
— using pair structure to represent compound values
— lists and list recursion

e State, Mutation, and Objects (Chapters 5 and 6)

— mutating existing data structure

— variables and assignment

— how the environment model explains computation
— how environments model objects

— classes

— delegation

— object-oriented design

¢ Programming Languages (Chapter 7)

— defining the syntax and semantics of programming languages
— tree representation of programs

— interpreters and compilers

— a Scheme evaluator based upon the environment model

+ Databases (Chapter 8)

— relational table model

— fundamental relational operators, select, project, and join
— implementation of a simple database system

— database analysis and design

e Algorithms (Chapter 9)

— algorithms for searching (linear search, binary search trees) and sort-
ing (insertion sort, Quicksort)

— stacks and queues

— application of stacks to implementing a graphics language based upon
Postscript

e Rule-Based Computing (Chapter 10)

— patterns and pattern matching
— predicate calculus

— logic programming languages
— backward and forward chaining

e Machines and Evaluators (Chapters 11 and 12)

— representation of data

— a simple computer

— programming in assembly language

— building a Scheme evaluator for a conventional machine
— introduction to operating systems

Xii

Preface

How To Use This Book

We have used this book in a number of ways at the University of British Columbia
and at Langara College. Our original design was a two-course—CS1 and CS2—intro-
ductory sequence for science students (not necessarily CS majors). We have found
little difference in the performance of students who have a programming back-
ground and those who do not.

We have also used this text in a one-semester course for students who have
already taken CS1. Students in this course are primarily CS or Computer Engineering
majors. Therefore, the course can be more intensive.

This text has been used in a course for students who are concurrently taking
a conventional CS2 course. This course emphasizes the interrelations between the
Scheme-based material and the C++-based content of the CS2 course. A similar
course could be designed at the second year level for students with CS1 and CS2.

Regardless of the course design, The Schematics of Computation contains more
material than can be covered. We have endeavored to provide a rich enough package
of materials that instructors can tailor courses to their needs. We also want students
to use this text as a reference, as well as a springboard to further study in CS.

Therefore, the book is divided into three parts:

e Chapters 1 through 7 are an integrated sequence that covers common pro-
gramming paradigms: functional, imperative, and object-oriented.

e Chapters 8 through 10 provide an introduction to algorithms and data
structures, through applications in data bases and logic.

e Chapters 11 and 12 introduce computer hardware and assembly-language
programming, practical Scheme implementations, and operating systems.

In a two-semester course sequence, it is reasonable to cover the material right
up to the imperative evaluator in Chapter 12. A one-semester course can go through
the first two chapters much more quickly, and then cover Chapters 3 through 7 in
depth. From there, the instructor has a number of choices:

o Proceed to Chapters 8, 9, and 10 if algorithms will be emphasized.
* Proceed to Chapters 11 and 12 if machines will be emphasized.
e A hybrid approach will go through Chapter 8 very quickly, and then cover

Chapters 9 and 11 in depth, ending with the imperative evaluator in Chap-
ter 12.

Many instructors will want to cover an additional language such as Modula-2,
Pascal, C/C++, or Turing in the latter part of a two-course sequence. The Instructor’s
Guide contains a tutorial called A Schemer's Guide to C++, which can be distributed
to students and used to introduce C++. The first part of the tutorial can be used
with Chapter 7; the second part refers to Chapter 1 1.

To The Student

That lyf so short, the craft so long to lerne,
Th’assay so hard, so sharp the conquerynge.
— Geoffrey Chaucer, The Parliament of Fowls

We wrote The Schematics of Computation because we wanted to share our excitement
about computer science with you. Programming languages, algorithms, and data
structures are things of beauty. They are also immensely useful. Industries related
to computing—such as information technology and software engineering—are in
the process of becoming one of the higgest sectors in world economies. Things of
beauty that can help us solve practical problems are rare indeed!

We want you to see how effective problem-solving techniques can help you
plan useful programs, how a programming language can help you write those pro-
grams, how algorithms and data structures can help make those programs more
efficient, and how conventional computers can help run programs.

We also want to introduce many of the current research areas of computer
science. There are interesting and useful questions to ask in every area of the field:
theory of algorithms, artificial intelligence and robotics, graphics, operating sys-
tems and networks, programming languages, data bases, and logic. Each of these
areas has applications from designing sophisticated electronic circuits to making
the computer systems in business, government, education, and elsewhere more re-
sponsive to the needs of their users.

It is important for you to understand that computer science, like all other
fields of study, is based upon a few unifying ideas that recur over and over in
computer science. One of our unifying ideas is the programming language we use—
Scheme. This language is based upon a few fundamental ideas that can be combined
in countless ways to produce interesting programming ideas. We will see a number
of different programming styles, including functional, imperative, object-oriented,
and logic programming.

* k%

The only way to learn computer science is to do it! We have scattered exercises
throughout the text to help reinforce what has been covered. When you reach one
of these exercises, do it! Then take a look at the answer in Appendix A.

At the end of each chapter, we have provided a list of the key words and
Scheme features that have been covered in that chapter. Study these words and
features until you understand them. We have included these lists not as some-
thing to be memorized, but rather as a measure of the important concepts you
should be learning. We have also included some Problems for you to work on, a
Self-Assessment (with answers in Appendix A) so you can see how effectively you
have learned the basic chapter concepts, and some Programming Projects for you
to investigate on your own.

Most chapters also end with a Case Study that explores ways in which the con-
cepts you are learning can be used to solve complex problems. These Case Studies
will repay your study of them.

Your instructor will give you lab assignments and programming projects to
complete. The ideas and skills we show here will help you do interesting things and
solve useful problems.

Xiii

xiv

To The Student

All of the programs we study are available electronically. Play with them! Try
them out and modify them. You can learn a great deal about programming by study-
ing the programs.

Although this is a large book, we only scratch the surface of computer science.
Each chapter ends with a set of Suggested Readings that will let you explore further
the topics raised in the chapter. The Bibliography at the end of the book lists all
the books mentioned in the Suggested Readings, as well as many others that teach
interesting programming languages, or cover other more advanced topics.

* * *

The only limit to what you can do with what you learn is your own creativity.
There is an infinite variety of programs that have yet to be written. We can help to
give you a start, but what you do with what you learn is up to you.

Acknowledgments

We owe thanks to those computer scientists who over the past fifty years have
searched for a clear, understandable, basis of programming. In particular, we are
indebted to those who have tried to use these models to introduce computing. The
developers of Logo as a teaching tool showed us that students can learn to do inter-
esting things with computers, when given a powerful programming environment.
The culmination of this approach is Abelson and Sussman’s Structure and Interpre-
tation of Computer Programs.

We have also learned from Dennis Ritchie and Ken Thompson, whose original
design for UNIX showed that power and simplicity need not be conflicting goals. The
work of Donald Knuth has showed us the close relationship between mathematics
and computer science, and between theory and practice.

x k%

The notes on which this book are based have been tested with many students,
teaching assistants, and colleagues. These poor souls have reported numerous er-
rors, obfuscations, and downright lies to us. We have endeavored to accommodate
as many of their suggestions as possible.

Don Acton, Carl Alphonce, Art Boehm, Craig Boutilier, Roelof Brouwer, Dave
Forsey, Murray Goldberg, Norm Hutchinson, David Kirkpatrick, Gerald Neufeld, Nick
Pippenger, and George Tsiknis, the other instructors who have used this book, de-
serve our thanks. We owe a special debt to Nick, who several times drew attention
to ways in which the manuscript could be substantially improved.

Our summer student helpers deserve much credit: Jason Holmes, Yaron Ki-
flawi, Cedric Lee, Carson Leung, Greg Reid, and Marko Riedel. Additional corrections
and suggestions were provided by Adrienne Drobnies, Rick Gee, Joseph Manning,
and Art Pope. We owe a particular debt of gratitude to Philip Greenspun who read
and commented on an early draft of the book.

Dan Friedman provided us with a large number of suggestions and improve-
ments.

Several reviewers for this book have influenced the current shape in ways
too numerous to describe. One reviewer deserves special mention. Brian Harvey
produced massive, detailed critiques of our work. Even that minority of his sugges-
tions we couldn’t adopt caused us to think carefully about what we were trying to
do and why.

Our publisher, Alan Apt, and editor, Sondra Chavez, have pushed us to pro-
duce what we are convinced is a much better book than before. Mona Pompili, our
project manager, worked with us very patiently as we typeset the book, and provided
a number of suggestions that improved both the presentation and the content.

We owe all of these people our sincere thanks, but of course cannot hold them
responsible for the final shape of the book.

We are particularly grateful to Maria Klawe and Bob Woodham of the Depart-
ment of Computer Science, The University of British Columbia, and to Judy Boxler
and Habib Kashani, Department of Computer Science, Langara College, for their
strong moral support and encouragement of this project.

Support for this project was also provided by the Department of Computer
Science, The University of British Columbia, and by Langara College.

xv

Xvi

How to Get the Software Package

The software covered in this book can be obtained from your instructor, or via In-
ternet ftp. To obtain a copy via the Internet, you will require an Internet connection,
and appropriate software. This discussion assumes you are using a character-based
ftp program.

The Software Package consists of three files:

e schmtics.zip: the Scheme code presented in this book and the lab manual

e winscm.zip, a Microsoft Windows-based Scheme system for 386, 486, Pen-
tium, and compatible computers

e vslib.zip, the “Schematics Adaptor Kit", a package that can be loaded into
a standard Scheme system to add the extra features used in this book.

There is also a file 'Readme, with late-breaking information about the software.

To get the software, you will need an Internet connection and an ftp program.
The instructions given here assume a character-based ftp program; consult your
documentation if you are using a Windows or Macintosh ftp program.

Start up your ftp program, and carry out the following steps (ftp> is a prompt
from the program).

ftp> open ftp.cs.ubc.ca

ftp> cd pub/local/schematics
ftp> get !Readme

ftp> binary

ftp> get schmtics.zip

ftp> get winscm.zip

ftp> get vslib.zip

ftp> close

Once you have obtained these files, use PKZip or a similar program to unpack
them, each into a separate directory. Each directory will contain a !Readme file with
information on how to install the software.

Contents

How to Get the Software Package

1 Computers, Programs, and Scheme
1.1 Setting the Stage
1.2 Scheme
1.3 Procedures and Definitions
1.4 Decisions Lo
1.5 TheRules (Version 2)
Summary, Further Readings, Key Words
Problems, Self-Assessment, Programming Problems

2 Recursion L
2.1 Recursive Procedures
2.2 Designing Recursive Procedures
2.3 Measuring the Cost of a Computation
2.4 Designing, Testing, and Debugging
Summary, Further Readings, Key Words
Problems, Self-Assessment, Programming Problems

3 Building Programs
3.1 Text Processing
3.2 Input/Output and Graphics
3.3 Procedures as Arguments
34 Program Organization: Variables, Values and Interfaces
Summary, Further Readings, Key Words
Problems, Self-Assessment, Programming Problems

4 Structures and Collections00
4.1 SrUuCturesS . . . « . & v v v e e e e e e e e e e e e
4.2 Quote and Symbolso
4.3 Collections v v v v v e e e e e
4.4 Mapping, Filtering, and Reduction
Summary, Further Readings, Key Words
Problems, Self-Assessment, Programming Problems

5 Mutation and State e e e e e e e e e e e e e
5.1 Balances and Boxeso
5.2 Mutating Data Structures
5.3 Variables that Vary
5.4 From Substitution to Environments
5.5 Definitions and modules

xviii Contents

Summary, Further Readings, Key Words 294
Problems, Self-Assessment, Programming Problems 295
6 Object-Oriented Programming o o ... 300
6.1 A World of Objectso 303
6.2 Implementing Classes with Procedures 316
6.3 Object-oriented Design 324
Summary, Further Readings, Key Words 338
Problems, Self-Assessment, Programining Problems 340
7 FEvaluators and Languages« 344
7.1 Programming Languageso 346
7.2 TECES « . o o v o v v e e e e e e e e e e e e 358
7.3 Interpreters and Compilers 364
7.4 Extending Scheme373
7.5 A Scheme Fvaluator238l]
Summary, Further Readings, key Words 405
Problems, Self-Assessment, Programming Problems 406
8 Databases e A 410
8.1 Tables and the Relational Model 414
8.2 A Database Language for Scheme 423
8.3 Implementing DBScheme L. 434
8.4 Designing a Database 449
Summary, Further Readings, Key Words 460
Problems, Self-Assessment, Programming Problems 461
9 Data Structures and Algorithms 464
9.1 Complexity Revisited00 466
.2 Searchingo 470
9.3 SOXtING e 483
9.4 Time-Ordered Structures 498
9.5 A Graphics Language T 0]
Summary, Further Readings, Key Words5l8
Problems, Self-Assessment, Programming Problems 520
10 FactsandRules52
10.1 Patterns and Rules520
10.2 A Driving Consultant 534
10.3 Logic and Logic Programming P e 12
10.4 Logic Languages and Evaluators 554
Summary, Further Readings, key Words 571
Problems, Self-Assessment, 'rogramming Problems 572
11 Gleam, the Ghost in the Machine 576
11.1 Representing Data 578
11.2 The Gleam Computer 589
11.3 Programming ingap 603

11.4 Implementing Gleam 616
I1.5 Implementing Graphics on Gleam

Contents Xix

Summary, Further Readings, Key Words 636
Problems, Self-Assessment, Programming Problems 637
12 Virtual Machines 640
12.1 Gleam/2 e e e e e 643
12.2 The Gleam Virtual Machine 645
12.3 The Imperative Evaluator 658
12.4 Operating Systems v v v v vt e e e 670
Summiary, Further Readings, Key Words 684
Problems, Self-Assessment, Programming Problems 685
Coda e e e e e e e e e e e e e 687
A ADNSWETS v vt ot e 688
B Scheme Reference Summary« v v v e a a0 e . 755
B.1 Lexical Ruleso 755
B.2 Scheme Values and Their Types 756
B.3 External representations of Scheme values 757
B.4 Variablesand Scopeo 000 759
B.5 BasiCFOrms o o it e e e e e e e e e e e e e 759
B.6 PrimitiveS o e e e e e e e e e e e e e 762
C Gleam Reference Manual 773
C.1 Address Calculation e e e e e e e e e e 774
C.2 Gleam Memory Access Instructions 774
C.3 Gleam Register instructions 776
C.4 Gleam/2 InStructions « + =« « 4 4 e e 4 e e e e 778
C.5 Gleam Assembly Language:gap « . . < . . . 779
Bibliography 781
GIOSSATY . o« o o s e e e e e e e e e e e e e e e e 784

