Instructions:

- You may use a calculator, but you must show all your work in order to receive credit.
- Be sure to erase or cross out any work that you do not want graded. Circle your final answer.
- When necessary, round answers to two decimal places.

Question:	1	2	3	4	5	6	Total
Points:	15	20	15	20	15	15	100
Score:							

1. Consider the differential equation $y^{\prime}=y(1-y)$.
(a) Show that, for any choice of constant C, the function

$$
\begin{equation*}
y(t)=\frac{e^{t}}{e^{t}+C} \tag{5}
\end{equation*}
$$

solves the differential equation.
(b) Is there any solution that is not of the form $y(t)=\frac{e^{t}}{e^{t}+C}$?
(c) Solve the initial value problem

$$
\begin{equation*}
y^{\prime}=y(1-y), \quad y(0)=3 . \tag{5}
\end{equation*}
$$

2. Consider the following family of initial value problems, indexed by $h>0$:

$$
\begin{equation*}
\frac{d y}{d t}=y(3+y)+h, \quad y(0)=1 \tag{20}
\end{equation*}
$$

For which values of h does $\lim _{t \rightarrow \infty} y(t)=+\infty$?
3. Consider the differential equation

$$
\left(4 x^{2} y^{3}+9 x^{3} y^{2}\right) y^{\prime}+3 x y^{4}+12 x y^{3}=0 .
$$

(a) Show that this equation is not exact.
(b) Show that it becomes exact after being multiplied by x.
(c) Find the general solution.
4. A 25 -liter tank is filled with water and 3 kg of salt. A salty solution with concentration 5 kg of salt per liter is added to the tank at a rate of 2 liters per minute. Through a separate spout, water is allowed to exit the tank at a rate of 2 liters per minute so that it does not overflow. We may assume the water in the tank is always well-mixed. How much salt is in the tank after 5 minutes? (Round your answer to two decimal places.)
5. Consider the differential equation

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0
$$

(a) Show that the substitution $v=\ln x$ transforms the equation into a linear equation with constant coefficients.
(b) Find the general solution.
6. Solve the initial value problem

$$
\begin{equation*}
9 y^{\prime \prime}+6 y^{\prime}+4 y=0, \quad y(0)=3, y^{\prime}(0)=4 . \tag{15}
\end{equation*}
$$

