1.0 ABOUT THE COURSE

PREREQUISITES:
\rightarrow calculus: functions, derivatives as rates of change
\rightarrow linear algebra (optional): vector spaces, linear maps, matrix mult, linear independence

SOME PROBLEMS WE'LL SOLVE IN THE COURSE

1) HARMONIC OSCILLATOR (sections 3.4.3.5, 3.6)
mass m attached to a
 Spring

Force of magnit.
Kt towards equilibrium position
Q: given the initial positron and velocity, predict the movement, even when there's frit.
2) Concentration (section 1.5)

GIVEN THE INITIAL AMOUNT OF SALT AN THE IN/OUT RATES, PREDICT THE FUTURE AMOUNTS OF SALT.
3) Kinematics (sec $4.2,2.3$)

A ball is thrown upward at speed vo.
$v_{0} \quad$ How high does it go?
what if there is air resistance?
(m)
4) Pursuit curves

Given the path followed by the mouse and the speeds $\underset{\text { cat }}{\rightarrow-\cdots-\boldsymbol{I}_{\text {mouse }}}$ of the cat at the mouse, find the path followed by the cat.
1.1 DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS \leftrightarrows DIFF Ea \hookrightarrow SOLUTION \longrightarrow GENERA SOL. EQUATION: a possible relationschip between some unspecified mathematical objects

$$
\begin{array}{ll}
\text { Examples: } \left.\begin{array}{ll}
x+3=5 \\
y^{2}+3 y+2=93
\end{array} \quad \begin{array}{ll}
\text { algebraic } \\
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right] \text { matrix eq } \\
& \cos t+e^{t}=\sin t
\end{array}
$$

DIFFERENTIAL EQUATION: a possible rel between some unspecified functions and their derivatives

EXAMPLE: $y^{\prime}(t)=0, t>0 \sim a$ function whose derivative is 0 at all points
$y^{\prime}=y \quad \sim a$ function that equals its on derivative

$$
y^{\prime}=y(1-y) \quad x y^{\prime}=y
$$

A SOLUTION to a diff. eq. is a function for which the relation is true.
$y^{\prime}(x)=0 \quad$ any constant function is a solution

$$
y^{\prime}=y
$$

$y(x)=e^{x}$ is a solution
$y(x)=0$ is a solution
$y(x)=C e^{x}$ is a solution for any number C

$$
y^{\prime \prime}=-y
$$

$y(x)=\sin x$ is a solution
$y(x)=\cos x$ is also a solution
$y(x)=\sin x+\cos x$ is also a solution
$y^{\prime}=y(1-y)$
$y(x)=0$ is a solution
$y(x)=1$ is a solution

$$
\left\{\begin{array}{l}
s^{\prime}=\kappa \\
c^{\prime}=-s \\
s(0)=0 \\
c(0)=1
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
s^{\prime}=c \\
c^{\prime}=+s \\
s(0)=0 \\
c(0)=1
\end{array}\right.
$$

A GENERAL SOLUTION to a diff.eq. is a formula with some free parameters that generates ALL solutions when numeric values are attributed to the parameters.

Ex 1) $y^{\prime}=0 \quad$ General solution $y=C \quad$ (one-parameter family") $y=2 C$ is the same gen. sol.
2) $y^{\prime}=y \quad$ General sol. $y(t)=c e^{t}$
3) $y^{\prime \prime}=y \quad G e n e r a l$ sol. $\quad y(t)=A \cos t+B \sin t \quad$ "two-parameter fam"
4) $y^{\prime}=y(1-y)$

Sol. $y(t)=\frac{e^{t}}{e^{t}+C}$
Check that this formula gives an actual solution.

$$
\begin{gathered}
y^{\prime}=y(1-y) \\
\left(\frac{e^{t}}{e^{t}+c}\right)^{\prime} \stackrel{?}{=} \frac{e^{t}}{e^{t}+c}\left(1-\frac{e^{t}}{e^{t}+c}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \left(\frac{e^{t}}{e^{t}+c}\right)^{1} \stackrel{?}{=} \frac{e^{t}}{e^{t}+c}\left(1-\frac{e^{t}}{e^{t}+c}\right) \\
& \frac{\left(e^{t}+c\right) e^{t}-e^{t} e^{t}}{\left(e^{t}+c\right)^{2}}=\frac{e^{t}}{e^{t}+c} \frac{c}{e^{t}+c}
\end{aligned}
$$

why is this not the general solution?
It does not generate $y=0$.

