1.2 INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS In the 1st lecture, we've seen: is what a diff eq is and some examples is what a solution and a general solution are Today we'll do some problems from Section 1.2, learn how to visualize diff egs and examine assumptions for uniqueness of solutions. A general solution is a one-parameter family of solutions. EXAMPLE $\frac{dy}{dx} = 2x+3$, y(1) = 2 $= \gamma y(x) = x^2 + 3x - 4 + y(x)$ $y(x) - y(1) = \int_{1}^{\infty} y'(t) dt$ = x2+3x-4+2 $= \chi^2 + 3\chi - 2$ $= \int 2t + 3 dt$ $= t^2 + 3t \Big|_{1}^{t=x}$ $x^{2}+3x-4$

EXAMPLE: a=2.5	Vo: initial	Speed, in mls
h.	a: acceler (Moon +	ration in mls² retrorockets)
	ho: initial	height (UNKNOWN)
6	iven: the	ground is reached at speed 0
	ND ho	· · · · · · · · · · · · · · · · · · ·
Let h(t) be the We know	height at	time t seconds.
(I) $h'(t) = -450 + 2$.5t (at	each second you get speed 2.5 m/s)
(II) of $h(t) = 0Want h(0).$	then h'(t)=	=0.
	such that t, into	$h(t_p) = 0$ using (I) $h(t_p) - h(0) = \int_{a}^{t_p} h'(s) ds$ and solve
for h(0)		$h(t_e) = 0$ using (1) $h(t_e) - h(0) = \int_0^{t_e} h'(s) ds$ and solve

Carrying out the plan.	
1) Solve for t _e in	$\left(\text{trick} : \frac{450}{2.5} = \frac{450}{5} \times 2 = 90 \times 2 \right)$
2) $h(180) - h(0) = \int_{0}^{180} -450 + 2.5 \text{ s d } 5 = -450$	$180 + 2.5 \cdot 180^{2}$
= 0 by assumption (I) = $h(0) = 450 \times 180 - 2$.	
ANSWER: the initial height has to f	1e 40,500 m.
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
 	
· · · · · · · · · · · · · · · · · · ·	. .
. .	
. .	

EXAMPLE: On planet G, a ball dropped from a height of
20ft hits the ground in 2s.
A person can throw a ball straight upward on Earth to a
maximum height of 144ft.
How high could this person throw the ball on planet G?
Disregard air friction. Take g=32ft/s ² on Earth.
Plan: 1) what is the grav. accel. on planet G?
2) at which speed is the ball thrown upward!
3) how high does it go?
1) Let x(t) be the height of the ball dropped on planet G in fl
let a be the grov. accel. on planet 6 in ft/s2
Then $X(0) = 20i + x(0) = \int_{0}^{t} x'(s) ds = \int_{0}^{t} \int_{0}^{s} x''(r) dr ds = \int_{0}^{t} \int_{0}^{s} -a dr ds$
let a be the grow accel on planet 6 in ft/s^2 Then $x(o) = 20$ $x(t) - x(o) = \int_0^t x'(s) ds = \int_0^t \int_0^s x''(r) dr ds = \int_0^t \int_0^s -a dr ds$ $x''(t) = -a$ $f_{as} ds = -\frac{at^2}{2}$
$\Rightarrow x(t) = 20 - \frac{\alpha t^2}{2}$
When does the ball hit the ground? When $x(t) = 0 \iff \frac{at^2}{2} = 20$
But we know it hits the ground in as, so $\frac{a \cdot 2^2}{2} = 20 \implies a = 10$

2) Let v(t) be the speed of the ball thrown upward on Earth that reaches .	144f
WANT V(0).	
KNOW: when $v(t) = 0$, the height is 144ft.	
When is $v(t) = 0$?	
$v(t) = v(0) - 32t \implies v(t) = 0$ when $t = \frac{v(0)}{32}$.	
What is the height at this time?	
$144 = h(t) = \int_{0}^{t} h'(s) ds = \int_{0}^{t} v(s) ds = \int_{0}^{t} v(0) - 32s ds = \frac{v(0)^{2}}{32} - 32 \frac{v(0)^{2}}{2 \cdot 32^{2}}$	
$= \frac{\mathcal{Y}(0)^2}{64}$	• •
$\implies \psi(0) = 8 \times 12 = 96$	· ·
3) How high does the ball go ?	
Now $v(0) = 96$, $v'(t) = -10$, $k(0) = 0$.	
When is $v(t) = 0$? $v(t) = 96 - 10t = v(t) = 0$ at time $t = 9.6$	
What is the height at $t = 9.6$? $h(9.6) - h(0) = \int_0^{9.6} v(s) ds = \int_0^{9.6} 96 - 10s ds = 96 \times 9.6 + -10 \times 9.6$	62
= 460.8	
REALITY CHECK: does the answer make sense?	
Planet G has weaker gravity, so it makes sense that the ball goes higher.	

EXAMPLE: a river of 1mi width flows northward. At distance × from the	center,
it flows at speed (in mi/h) $v(x) = 9(1 - \frac{x^2}{0.5^2})$.	· · · · ·
A swimmer crosses the river at constant speed Vs, swimming due east.	
How fast does he need to swim in order to drift only 1 mile downstre	am?
Choose a coordinate system	whose
margin y axis goes northwards in the	
of the river.	
Denote by y(x) the path follow	wed by
the swimmer, by vs the speed	· ·
Swimmer, in mi/h	
GOAL: determine Vs.	
<u>GIVEN</u> : $y(0.5) - y(-0.5) = 1$ (swimmer dr downstream	ifts 1mi n)
$y'(x) = \frac{v(x)}{v_s} \implies v_s y'(x) = 9(1 - \frac{x^2}{0.25})$	
$V_{\rm S}$ $V_{\rm S}$ $(1 - 3)($	

Thus, we have the problem		· · · · · · · · · · · · · · · · · · ·	• •
$v_{5} y'(x) = 9 - 36x^{2}$ (I) $y(\frac{1}{a}) - y(\frac{-1}{a}) = 1$ (II)			· ·
	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· ·
Integrating (I),			
$v_s \mathcal{Y}(x) = g_x - 1 \mathcal{Q} x^3 + C$	for some C.		
To find C and \Im_s , use eq $y(\frac{4}{a}) - y(-\frac{4}{a}) = 1 \implies \frac{4}{\Im_s} \left[\left(\frac{9}{a} \right) \right]$	$(II) - \frac{12}{8} + C - \left(\frac{9}{2} + \frac{12}{8} + C\right)$	$]=1 \implies v_s = 6$	· ·
To find C and Us, use eq $y(\frac{1}{a}) - y(-\frac{1}{a}) = 1 \implies \frac{1}{U_s} \left[\left(\frac{9}{a} \right) \right]$ <u>ANSWER</u> : to drift 1 mi downstr	$-\frac{12}{8}+C$) $-\left(\frac{9}{2}+\frac{12}{8}+C\right)$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·
$y\left(\frac{4}{a}\right) - y\left(-\frac{4}{a}\right) = 1 \implies \frac{4}{v_{s}} \left[\left(\frac{9}{a}\right) \right]$	$-\frac{12}{8}+C$) $-\left(\frac{9}{2}+\frac{12}{8}+C\right)$	· · · · · · · · · · · · · · · · · · ·	 . .<
$y(\frac{4}{a}) - y(-\frac{1}{a}) = 1 \implies \frac{1}{v_s} \left[\left(\frac{9}{a} \right) \right]$ <u>ANSWER</u> : to drift 1 mi downstr	$-\frac{12}{8}+c) - \left(\frac{9}{2}+\frac{12}{8}+c\right)$ eam, the swimmer has	to go at 6mi/h.	
$y(\frac{1}{a}) - y(-\frac{1}{a}) = 1 \implies \frac{1}{\upsilon_s} \left[\left(\frac{9}{a} \right) \right]$ <u>ANSWER</u> : to drift 1 mi downstr	$-\frac{12}{8}+c) - \left(\frac{9}{2}+\frac{12}{8}+c\right)$ eam, the swimmer has	to go at 6mi/h.	• •
$y(\frac{1}{a}) - y(-\frac{1}{a}) = 1 \implies \frac{1}{v_s} \left[\left(\frac{9}{a} \right) \right]$ <u>ANSWER</u> : to drift 1 mi downstr	$-\frac{12}{8}+c) - \left(\frac{9}{2}+\frac{12}{8}+c\right)$ eam, the swimmer has	to go at 6mi/h.	· ·