1.2 INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS

Ion the 1st lecture, we've seen:
\rightarrow what a diff eq is and some examples
\rightarrow what a solution and a general solution are
Today weill do some problems from section 1.2, learn how to visualize diff eos and examine assumptions for uniqueness of solutions.
A general solution is a one parameter family of solutions.
EXAMPLE $\frac{d y}{d x}=2 x+3, y(1)=2$

$$
\begin{aligned}
y(x)-y(1) & =\int_{1}^{x} y^{\prime}(t) d t \\
& =\int_{1}^{x} 2 t+3 d t \\
& =t^{2}+\left.3 t\right|_{1} ^{t=x} \\
& =x^{2}+3 x-4
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y(x) & =x^{2}+3 x-4+y(1) \\
& =x^{2}+3 x-4+2 \\
& =x^{2}+3 x-2
\end{aligned}
$$

EXAMPLE:
v_{0} : initial speed, in m / s

a : acceleration in $\mathrm{m} / \mathrm{s}^{2}$
(Moon + retrorockets)
h_{0} : initial height (UNKNOWN)
GIVEN: the ground is reached at speed 0 FIND h_{0}

Let $h(t)$ be the height at time t seconds.
We Known
(I) $\quad h^{\prime}(t)=-450+2.5 t \quad$ (at each second you get speed $2.5 \mathrm{~m} / \mathrm{s}$)
(II) Of $h(t)=0$ then $h^{\prime}(t)=0$.

Want $h(0)$.
Plan: 1) find t_{l} such that $h^{\prime}\left(t_{l}\right)=0$ using (I)
2) planing this t into $h\left(t_{e}\right)-h(0)=\int_{0}^{t_{e}} h^{\prime}(s) d s$ and solve for $h(0)$

Carrying out the plan.

1) Solve for t_{l} in

$$
0=-450+2.5 t_{l} \Rightarrow t_{l}=180 \quad\left(t_{\text {rick }}: \frac{450}{2.5}=\frac{450}{5} \times 2=90 \times 2\right)
$$

2) $\underbrace{h(180)}_{=0 \text { by }}-h(0)=\int_{0}^{180}-450+2.5 s d s=-450.180+2.5 \cdot \frac{180^{2}}{2}$

$$
=0 \text { by } \Rightarrow h(0)=450 \times 180-2.5 \times \frac{180^{2}}{2}=40,500
$$

ANSWER: the initial height has to be 40,500 m.

EXAMPLE: On planet G, a ball dropped from a height of 20 ft hits the ground in 2 s .

A person can throw a ball straight upward on Earth to a maximum height of 144 ft .

How high could this person throw the ball on planet G? Disregard air friction. Take $g=32 \mathrm{fk} / \mathrm{s}^{2}$ on Earth.
Plan: 1) what is the grave. accel. on planet G ?
2) at which speed is the ball thrown upward?
3) how high does it go?

1) Let $x(t)$ be the height of the ball dropped on planet G in ft let a be the grave accel on planet G in $\mathrm{ft} / \mathrm{s}^{2}$
Then $x(0)=20\} x(t)-x(0)=\int_{0}^{t} x^{\prime}(s) d s=\int_{0}^{t} \int_{0}^{s} x^{\prime \prime}(r) d r d s=\int_{0}^{t} \int_{0}^{s}-a d r d s$

$$
\begin{aligned}
x^{\prime \prime}(t)=-a \quad & =\int_{0}^{t} a s d s=-\frac{a t^{2}}{2} \\
\Rightarrow x(t) & =20-\frac{a t^{2}}{2}
\end{aligned}
$$

When does the ball hit the ground? When $x(t)=0 \Leftrightarrow \frac{a t^{2}}{2}=20$
But we know it hits the ground in 25 , so $\frac{a \cdot 2^{2}}{2}=20 \Rightarrow a=10$
2) Let $v(t)$ be the speed of the ball thrown upward on Earth that reaches $144 f$! WANT $v(0)$.
KNow : when $v(t)=0$, the height is 144 ft .
When is $v(t)=0$?

$$
v(t)=v(0)-32 t \Rightarrow v(t)=0 \text { when } t=\frac{v(0)}{32} \text {. }
$$

What is the height at this time?

$$
\begin{aligned}
& \text { What is the height at this Time: } \\
& \begin{aligned}
144=h(t) & =\int_{0}^{t} h^{\prime}(s) d s=\int_{0}^{t} v(s) d s=\int_{0}^{v(0) / 32} v(0)-32 s d s=\frac{v(0)^{2}}{32}-32 \frac{v(0)^{2}}{2 \cdot 32^{2}} \\
& =\frac{v(0)^{2}}{64} \\
\Rightarrow v(0) & =8 \times 12=96
\end{aligned}
\end{aligned}
$$

3) How high does the ball go?

Now $v(0)=96, v^{\prime}(t)=-10, h(0)=0$.
When is $v(t)=0$? $v(t)=96-10 t \Rightarrow v(t)=0$ at time $t=9.6$
What is the height at $t=9.6$? $\quad h(9.6)-h(0)=\int_{0}^{9.6} v(s) d s=\int_{0}^{9.6} 96-10 s d s=96 \times 9.6 t$

$$
\begin{aligned}
& -10 \times \frac{9.6^{2}}{2} \\
= & 460.8
\end{aligned}
$$

REALITY CHECK: does the answer make sense?
Planet G has weaker gravity, so it makes sense that the ball goes higher.

EXAMPLE : a river of 1 mi width flows northward. At distance x from the center, it flows at speed (in mi /h) $v(x)=9\left(1-\frac{x^{2}}{0.5^{2}}\right)$.
A swimmer crosses the river at constant speed v_{s}, swimming due east.
How fast doesche need to swim in order to drift only 1 mile downstream ?
west margin

Choose a coordinate system whose y axis goes northwards in the middle of the river.

Denote by $y(x)$ the path followed by the swimmer, by v_{s} the speed of the swimmer, in mi / h
GOAL: determine v_{s}.
GIVEN: $\quad y(0.5)-y(-0.5)=1$
(swimmer drifts 1 mi downstream)

$$
y^{\prime}(x)=\frac{v(x)}{v_{s}} \Rightarrow v_{s} y^{\prime}(x)=9\left(1-\frac{x^{2}}{0.25}\right)
$$

Thus, we have the problem

$$
\begin{align*}
v_{s} y^{\prime}(x) & =9-36 x^{2} \tag{I}\\
y\left(\frac{1}{2}\right)-y\left(\frac{-1}{2}\right) & =1 \tag{II}
\end{align*}
$$

Integrating (I),
$v_{s} y(x)=9 x-12 x^{3}+C \quad$ for some C.
To find C and v_{s}, use eq (II)

$$
y\left(\frac{1}{2}\right)-y\left(-\frac{1}{2}\right)=1 \Rightarrow \frac{1}{v_{s}}\left[\left(\frac{9}{2}-\frac{12}{8}+c\right)-\left(\frac{9}{2}+\frac{12}{8}+c\right)\right]=1 \Rightarrow v_{s}=6
$$

ANSWER: to drift 1 mi downstream, the swimmer has to go at $6 \mathrm{mi} / \mathrm{h}$.

