1.4 SEPARABLE EQUATIONS

Those are equations of the form

$$
y^{\prime}(x)=f(x) g(y)
$$

METHOD OF SOLUTION:

$$
\begin{aligned}
& \frac{d y}{d x}=f(x) g(y) \\
& \frac{d y}{g(y)}=f(x) d x \\
& \int \frac{d y}{g(y)}=\int f(x) d x \text { (IMPLICIT SOLUTION) }
\end{aligned}
$$

Solve for y to get an explicit solution.
The method of separation of variables yields a one-parameter family of solutions. A singular solution is a solution that is not included in the 1 -parameter family yielded by the separation of variables method.

$$
y^{\prime}=2 x y
$$

$$
y^{\prime}(x)=2 x y(x)
$$

$\frac{y^{\prime}(x)}{y(x)}=2 x$ if $y(x) \neq 0$ (here we have missed the solution $y \equiv 0$)

$$
\ln |y(x)|=x^{2}+C
$$

$|y(x)|=e^{c} \cdot e^{x^{2}}$ notice that e^{c} is always positive
$y(x)=D e^{x^{2}} \longleftrightarrow$ if $|y(x)|=e^{c} \cdot e^{x^{2}}$ then either $y(x)=e^{c} e^{x^{2}}$ or $y(x)=-e^{c} e^{x^{2}} \cdot$ As C varies, $\pm e^{c}$ can attain any nonzero value. By writing $D e^{x^{2}}$, we cover the possibilities $\pm e^{c} e^{x^{2}}$ and 0 .

$$
x \frac{d y}{d x}=\left(1-2 x^{2}\right) \tan y
$$

$\frac{d y}{\tan y}=\frac{1-2 x^{2}}{x} \quad$ we have missed the solution $y \equiv 0, \pm \pi, \pm 2 \pi, \ldots$

$$
\begin{aligned}
& \int \frac{\cos y d y}{\sin y}=\int \frac{1}{x}-2 x d x=\ln |x|-x^{2}+C \\
& \int \frac{d z}{z}=\ln |z|=\ln |\sin y| \\
& \Rightarrow \ln \cos y d y=d z \\
& \Rightarrow \sin y|=\ln | x \mid-x^{2}+C \\
& \quad|\sin y|=e^{C}|x| \cdot e^{-x^{2}}
\end{aligned}
$$

$\sin y=D x \cdot e^{-x^{2}}<D$ covers the possibilities $\pm e^{c} x e^{-2 x^{2}}$ and 0 $y(x)=\sin ^{-1}\left(D x \cdot e^{-x^{2}}\right)$ not all D yield solutions, because the argument of $\sin ^{-1}$ has to be in $(-1,1)$. One has to choose the range of $\sin ^{-1}$. Check the slope field!

In a room at $70^{\circ} \mathrm{F}$, a murder occurred. The victim's body temperature was $98.6^{\circ} \mathrm{F}$ at the moment of death. When the body was found, its temperature was $72.5^{\circ} \mathrm{F}$. One hour after the body was discovered, its temperature was $72^{\circ} \mathrm{F}$. How long after death was the body discovered?

ASSUme NEWTON'S LAW OF COOLING: the rate of change of the temperature of a body is proportional to the difference between it's temperature and the ambient temperature.

Solution: let $T(t)$ be the temperature of the body (in ${ }^{\circ} F$) t hours after death.

GOAL: find to such that $T\left(t_{0}\right)=72.5$
GIVEN: $\frac{d T}{d t}=-k(70-T)$ for some
 unknown $K>0$
(4) $\left\{\begin{array}{l}T(0)=98.6 \\ T\left(t_{0}\right)=72.5 \\ T\left(t_{0}+1\right)=72\end{array}\right.$

PLAN: 1) find the gen. sol. to $\frac{d T}{d t}=-k(70-T)$ (2 unknowns, C and K) 2) plug (ف) into the gen. solution to find C, K and t_{0}.

1) Solve $\frac{d T}{d t}=-k(70-T)$

$$
\frac{d T}{70-T}=-K d t
$$

$\ln (T-70)=-K t+C$ sin our problem, $T>70$ up to time t_{0}

$$
\begin{aligned}
& T-70=e^{c} e^{-k t} \\
& T(t)=70+e^{c} e^{-k t}
\end{aligned}
$$

2)

$$
\begin{aligned}
& T(0)=98.6 \Rightarrow 98.6=70+e^{c} \Rightarrow e^{c}=28.6 \\
& T\left(t_{0}\right)=72.5 \Rightarrow 70+28.6 e^{-k t_{0}}=72.5 \Rightarrow 28.6 e^{-k t_{0}}=2.5 \\
& T\left(t_{0}\right)-T\left(t_{0}+1\right)=0.5 \Rightarrow 28.6\left(e^{-k t_{0}}-e^{\left.-k t_{0}+1\right)}\right)=0.5 \\
& \Rightarrow 28.6 e^{-k t_{0}}\left(1-e^{-k}\right)=0.5 \\
& \Rightarrow 2.5\left(1-e^{-k}\right)=0.5 \\
& \Rightarrow 1-e^{-k}=0.2 \Rightarrow e^{-k}=0.8 \\
& 28.6 e^{-k t_{0}}=2.5 \Rightarrow 28.6(0.8)^{t_{0}}=2.5 \Rightarrow t_{0}=\frac{2.5}{\ln 0.8}=10.9
\end{aligned}
$$

ANSWER: the body was found 10.9 hours after death.
CHECK ANSWER: we found $T(t)=70+28.6(0.8)^{t}$ and $t_{0}=10.9$.

$$
\begin{array}{lll}
T(0)=98.6 & \text { ok } & T\left(t_{0}+1\right)=72 \text { oK } \\
T\left(t_{0}\right)=72.5 & \text { ok } &
\end{array}
$$

Consider the IVP $\left(y^{\prime}\right)^{2}=4 y, y(a)=b$. When does it have no solutions? When does it have infinitely many solutions? When does it have a unique solution?

Since $\left(y^{\prime}\right)^{2}$ is always $\geqslant 0$, there are no solutions when $b<0$.
If $b \geqslant 0$. we can write $y^{\prime}= \pm 2 \sqrt{y}=f(t, y)$. Notice that $\frac{\partial f}{\partial y}=\frac{1}{\sqrt{y}}$ is not defined when $y=0$. The existence and uniqueness the garantees unique solution when $b>0$. However this uniqueness is for the eq. $y^{\prime}=2 \sqrt{y}$, and not for the eq. $\left(y^{\prime}\right)^{2}=2 \sqrt{y}$. For the original eq. there are two solutions when $b>0$: one is the solution of $y^{\prime}=2 \sqrt{y}$ and the other is the solution of $y^{\prime}=-2 \sqrt{y}$.

We can try to solve by separating the variables:

$$
\begin{aligned}
y^{\prime}= \pm 2 \sqrt{y} & \Rightarrow \frac{d y}{2 \sqrt{y}}= \pm 1 \\
& \Rightarrow \sqrt{y}= \pm x+c \Rightarrow y(x)=(\pm x+c)^{2} \quad \text { two solutions when } b>0 .
\end{aligned}
$$

Infinitely many when $b=0$.

