1.4	SEPARAB	BLE EG	UATI	IONS	• •			• •	· ·	· ·	· ·	· ·			• •	• •	· ·	•	· ·	•	•	• •	•	•
Th	ose are	e quat	ions	of	the	form	· · ·	• •	· ·	· ·	· ·	· ·				• •	• •	•	· ·	•	•	• •	•	•
	y)(x)	= f(x)	કુ(કુ)		• •	· · ·	· · ·	• •	· ·	· ·	· ·	· ·					· ·		· ·	•	•	• •	•	•
MET	THOD OF	SOLUT	ION:	• • •	• •	· · ·	· · ·	• •		· ·	· ·	• •			• •	• •		•	· ·	•	•	• •	•	•
	$\frac{dy}{dy} = f$	(x)g(y)	• •	• • •	• •			• •	••••	· ·	· ·	• •		•	•••	• •	• •	•	••••	•	•	• •	•	•
	du c		• •	· · ·	• •			· ·	• •		••••	• •		•	• •		• •	•	••••	•	•	• •	•	•
	$\frac{\partial y}{\partial (y)} = f$	·(X) dx	· ·	· · ·	• •			· ·	••••		· ·	• •	••••		• •			•	••••	•	9 9	• •	•	•
	$\int \frac{dy}{g(y)} =$	fanda	(I	MPLI	CIT	SOLUT	ION)	· ·	• •	• •	• •	•••			••••			•	• •	•	•	••••	•	•
								• •	• •				• •	•		• •	• •			•	•	• •	•	•
			• •	• • •	• •	• • •	• • •										• •	•	• •	*	•		•	·
· · ·	Solve for	r 4 to	get	an e	xplic	it solut	lion.		• •	· ·			••••		• •		• •	•	· ·	•	•		•	•
• • •			• •	• • •			• • •	-para	meter	fan	nily	of 50	lutior	15.	· · ·	jingu	lar	Sol	utic	- - - - - -	is	· · ·	•	•
The	method of	f separa	tion c	of vari	ables	yields	a one														is i	a	•	•
The		f separa	tion c	of vari	ables	yields	a one														is .	· · · · · · · · · · · · · · · · · · ·	•	
The	method of	f separa not incl	tion c uded	of vari	ables : 1-p	yields	a one er famil	y yie	lded 	by H	he s	epara	rtion	of		riable	e n	neth	nod.	•	•	· · ·		
The	method of	f separa not incl	tion c	of vari	ables 2 1-p	yields	a one r famil	y yie		by H	he s	eparc	rtion	of 		riable	ε το	nett		•	•	· · ·	٠	٠
The	method of	f separa not incl	tion c	of vari	ables 2 1-p	yields	a one r famil	y yie			he s	eparc	rtion	1 0 1 1 1 1 1 1 1 1 1 1		riable		nett	ied:		•	· · · · · · · · · · · · · · · · · · ·		•
The	method of	f separa not incl	tion c	of vari	ables 2 1-p	yields	a one r famil	y yie	I ded 		he s	eparc	ction	10		riable		nett						•

ું ત્રુ) =	= a	x	y	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•			•		•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•				= a = a						- ji	ť.		j(>	x)	;	0	•	(jh	era		Ŵ		ho	L V (m M	is	5 e 0	J.	-+1	ne	S	0	vt	ior	1	y		.0)	•	•	•	•	· ·
•	•	ln	r	14(, (x)		, = ,	x.ª	?+	Ċ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	
•	•			•						•		k	\sim	- <u>n</u>	oti	iċe		th	at	ė	C	is		alı	WC	XÝ S		Do	Śi	tiv	ve	•		•	•	•	•	•	•	•	•	•			•	•	•	
•	•	•	•							_				, jt												· ·		•) =		,c	X	ລ		• •	ur	(x)			þ	- p	χ2	΄ Δ	C
•	•	•	•	·ĽČ	<u> </u>						•																													- T-								
•	•	•	•	•	•	• •	۰	٠	۰	٠	٠																													R	y	WI	ſŗŢ	in	z	. J)e	×2 ,
•	•	•	•	•			•	•	•	•	•	•	•	1 V	Ne	•	Ċc	VE	er.	1	the		P	55	sib	oili	ti	eS	4	le	e	X °	.0	in	9	Ċ	2.	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	• •		٠		٠	٠	٠			•	•	•		٠	•	٠		٠	٠	٠	٠	•	•	٠	٠	•	٠	•	٠	•	•	•	•	•	٠	•	•	٠		•	•	•	• •
•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	
•	•	•	•	•	•	• •	٠	•	٠		•					•			•	٠	٠	•			•	٠	٠	•		٠		٠	•	•	•		•	•	•			•	•			•	•	
•	•	•	•	•	•			٠				٠		•		•		•	•		•		•	•	٠	٠	•		•	٠	•	•	•	•	•	•	•	•	•	•		•	٠	•	•	٠	•	
•	٠	•	٠	٠	•	• •		٠	٠	٠	٠	٠	•	•	•	٠	•	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•	٠	•	٠	•	٠	•	•	•	•	٠	•	٠	•	٠	•	•		•	
•	•	•	•	•	•	• •	•	·	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•		•	·	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	٠	
•	•	•	•	•	•			•	•		•	•			•	•	•		•		•				•	•	•			•			•	•	•		•	•	•			•	•			•	•	
•					•																																										•	
٠	•	•	•	•	•	• •	•	٠	٠		٠	٠				•	•		•	٠	٠	٠			٠	٠	٠	•		٠		٠	•	•	٠	•	•	•	٠		•	•	٠	•	•	٠	٠	
	•	•	•	•	•	• •		•						•	•		•	•	•	•	•				•	•	•		•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•		
	•	•	•	•	•	• •	•	٠	٠	•	•	٠	•	•		٠	•		•	•	•	•	•	٠	٠		٠	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	• •
																																																• •
	•			•	•		٠																			٠								•			•	•					•			•	•	
																																					•											

$\mathcal{X} \frac{dy}{dx} = (1 - 2x^2) \tan y$		· · · · · ·	· · · · ·			
$\frac{dy}{ton y} = \frac{1-2x^2}{x} \qquad \qquad$	ssed the solu	tion y=C), ±π,±a	π,		
$\int \frac{\cos y}{\sin y} dy = \int \frac{1}{x} - 2x dx = \ln x - \frac{1}{x} - \frac{1}{x} - \frac{1}{x} + \frac{1}{x} - \frac{1}{x} + 1$	$-x^2 + C$	· · · · · ·	· · · · ·	· · · · ·		· · · · · ·
$\ - \sin y = 3, \cos y dy = d3$	· · · · · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · · ·
$\int \frac{d3}{3} = \ln 3 = \ln \sin y $	· · · · · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · · ·
$\implies \ln \sin y = \ln x - x^2 + C$	· · · · · · · ·	· · · · · ·	· · · · ·			· · · · · ·
$ \sin y = e^{c} x \cdot e^{-x^{2}}$			· · · · ·			
$\sin y = D x e^{-x^2} \longleftrightarrow D cov$	iers the poss	ibilities	$\pm e^{c} \chi$	e ^{-2x²}	and	
$y(x) = \sin^{-1}(Dx e^{-x^2})$	- not all D yi	eld solutio	ns, beca	mse tł	ne argu	ment of
	sin ⁻¹ has to range of s	be in l-1.	,1). One K the	has to slope f	choose ield!	e the
		· · · · · ·	· · · ·	· · · · ·	· · · ·	· · · · · ·

In a room at 70°F, a murder occurred. The victim's body temperature was 98.6°F at the moment of death. When the body was found, its temperature was 72.5°F. One hour after the body was discovered, its temperature was 72°F. How long after death was the body discovered? Assume NEWTON'S LAW OF COOLING: the rate of change of the temperature of a body is proportional to the difference between it's temperature and the ambient temperature. Solution: let T(t) be the temperature of the body (in °F) t hours after death. 72.5 72 98.6 GOAL: find to such that $T(t_0) = 72.5$ to to+1 4 <u>GIVEN:</u> $\frac{dT}{dt} = -k(70-T)$ for some unknown K>0 0 (death) (found) (T(0) = 98.6 (\mathbf{R}) $T(t_{\circ}) = 72.5$ $T(t_{0}+1) = 72$ PLAN: 1) find the gen. sol. to $\frac{dT}{dt} = -k(70-T)$ (2 unknowns, C and K) 2) plug 📀 into the gen. solution to find C, K and to.

1) Solve $\frac{dT}{dt} = -\kappa(70 - T)$	•	•••	•	• •	• •	• •	•	•
$\frac{dT}{70-T} = -\kappa dt$	•	•••		· ·	• •		•	•
ln (T-70) = - Kt+C « in our problem, T > 70 up to time to								
$T-70 = e^{c}e^{-\kappa t}$	•							•
$T(t) = 70 + e^{c} e^{-kt}$			•				•	•
2) $T(0) = 98.6 \Rightarrow 98.6 = 70 + e^{c} \Rightarrow e^{c} = 28.6$	•	• •	•					•
$T(t_{o}) = 72.5 \implies 70 + 28.6 e^{-kt_{o}} = 72.5 \implies 28.6 e^{-kt_{o}} = 2.5$		• •						•
$T(t_0) - T(t_0+1) = 0.5 \implies 28.6 (e^{-Kt_0} - e^{-K(t_0+1)}) = 0.5$	•	· ·	•	• •	• •	• •	•	•
$\Rightarrow 28.6 e^{-kt_0} (1 - e^{-k}) = 0.5$	•	• •			• •	••••	•	•
=> $2.5(1-e^{-k}) = 0.5$		· ·			•••	••••		•
=> $1 - e^{-k} = 0.2 => e^{-k} = 0.8$ lm $\frac{2.5}{2}$	•	• •	•	 	• •	• •	•	•
$28.6 e^{-kt_0} = 2.5 \implies 28.6 (0.8)^{t_0} = 2.5 \implies t_0 = \frac{200}{ln \ 0.8} = 10.9$	•	• •	•	• •	• •	• •	•	•
ANSWER: the body was found 10.9 hours after death.		•••			• •	• •		•
	•	• •	•			• •	•	•
CHECK ANSWER: we found $T(t) = 70 + 28.6 (0.8)^{t}$ and $t_{0} = 10.9$.	•	• •	•	• •	• •	• •	•	•
$T(0) = 98.6 \text{ OK} T(t_0+1) = 72 \text{ OK}$		• •	•	• •	• •	• •	•	•
$T(t_{o}) = 72.5$ OK		••••	•	• •	• •	• •	•	•

solutions? When de Since (y') ^a is all If b>0. we ca and uniqueness thm	$(y^{*})^{2} = 4y$, $y(a) = b$. When bes it have a unique solution ways $\gg 0$, there are <u>no</u> n write $y^{*} = \pm 2\sqrt{y} = \pm f(t, y)$ and garantees unique solution $(y^{*})^{2} = 2\sqrt{y}$. For the	on? <u>solutions when b<0</u> . Notice that 2f 3y n when b>0. Howe	$= \frac{1}{\sqrt{g}}$ is not defined we have this uniqueness	hen $y = 0$. The existence is for the eq. $y' = a\sqrt{y}$,
				· · · · · · · · · · · · · · · · · · ·
	$y' = 2\sqrt{y}$ and the other			
We can try to	solve by separating the	variables:		
$y' = \pm a\sqrt{y}$				
	219			
· · · · · · · · · · ·	$\sqrt{y} = \pm x + c \Rightarrow y(x) = ($	$+x+c)^{2}$ two	solutions when b>0	
· · · · · · · · · · ·				
ተ የተ				
Infinitely man	y when $b=0$.			

• •	• • •	• •	• •										•																			
													•														•	٠		٠		
													•																			
• •													•			•																
• •	• • •	• •	• •	• •	• •		• •	٠	٠	• •	٠	• •	•			٠	• •		• •	٠					•	• •		٠	• •	٠	٠	• •
• •	• • •		• •	• •	• •		• •	٠	•	• •	٠	• •	•	•	• •		• •		• •	٠	• •		• •	•	٠	• •	•	۰	• •	0	٠	• •
								•					•							•							•					
													•		• •												•					
			• •	• •	• •			٠	•	• •	٠	• •	•	•	• •	٠		•		٠		•			•			٠		٠	٠	• •
				• •				٠	٠	• •	٠	• •	•	٠		٠		•		٠		•			•	• •		٠	• •	٠	٠	• •
	• • •	• •	• •	• •	• •	•	• •		•	• •	٠	• •	•	٠	• •	0	• •		• •				• •	•	٠	• •	•	0	• •	0	٠	• •
• •	• • •	• •	• •	• •	• •	•	• •	٠	•	• •		• •	•	•	• •		• •	•	• •	٠	• •		• •	•	•	• •	•	•		٠		• •
• •	• • •	• •	• •		• •					• •				•					• •									•				• •
							• •	٠	•	• •	•	• •	•	•	• •	•	• •			٠	• •		• •		•	• •		٠	• •	٠	•	•
			• •	• •	• •	•		٠	•	• •	٠	• •	•	•	• •	٠	• •	•		٠		*		•	٠	• •	٠	٠	• •	0	٠	• •
			• •	• •	• •	•	• •	٠		• •	٠	• •	•		• •		• •	•	• •	٠	• •	٠	• •	٠	٠	• •	٠	0		0	٠	• •
			• •	• •	• •	•	• •	٠	•	• •		• •	•	•	• •	•	• •	•	• •	٠	• •		• •	•	•	• •	•	٠		٠		• •
• •	• • •	• •	• •	• •	• •	•	• •	•		• •		• •	•	•	• •	•	• •	•	• •	٠	• •		• •				•	•		٠	•	• •
• •	• • •	• •	• •		• •		• •	۰	٠	• •	٠	• •	•	•	• •	٠		•		۰		•			٠	• •	•	٠	• •	٠	٠	• •
• •	• • •	• •				•		٠	٠	• •	٠	• •	•	•	• •			*		٠		•		•	٠	• •	٠	٠	• •	0	٠	• •
	• • •	• •	• •	• •	• •	•	• •	٠	•	• •	•	• •	•	•	• •	•	• •	•	• •	•	• •	•	• •	•	•		•	•		•	•	• •
			• •	• •	• •	•	• •	•	•	• •	•	• •	•		• •		• •		• •	•	• •	•	• •	•	•	• •	•	•	• •	•	•	• •
	• • •	• •	• •	• •	• •	•	• •	*	•	• •	٠	• •	•	•	• •	*	• •	•	• •	٠	• •	•		•	•	• •	•	٠	• •	٠	٠	• •
• •	• • •	• •		• •		•		٠	•		•	• •	•	•	• •	•	• •	•		٠				•	•	• •	•	•		•	•	• •
• •		• •	• •	• •	• •		• •	•	•	• •	•	• •	•		• •	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	•	• •	•	•	• •
• •	• • •	• •	• •	• •	• •	•	• •	٠	•	• •	٠	• •	•	•	• •	٠	• •	*	• •	٠	• •	*	• •	•	•	• •	•	٠	• •	٠	٠	• •
• •			• •	• •	• •	•	• •		٠	• •	٠	• •	•	•	• •		• •	•				٠		٠	٠	• •	٠	0	• •	0	٠	• •
	• • •																															
	• • •																															
	• • •																															
																		-		-												
• •		o o	• •	• •	• •		• •	٠																					• •	٠	٠	• •
		• •		• •	• •		• •	•	٠		٠	• •	•		• •	•		0	• •	•		۰	• •		٠	• •	٠	۰				