1.5 FIRST ORDER LINEAR EQUATIONS

Diff. eqs. we can (sometimes) solve: $\frac{d y}{d x}=\frac{g(x)}{h(y)}$
Today: $\frac{d y}{d x}+P(x) y=Q(x) \quad$ (first-order linear)
First order: the equation has y^{\prime} but does not have $y^{\prime \prime}, y^{\prime \prime \prime}, \ldots$
$y^{\prime}=2 x y \quad$ 1st order
$y^{\prime \prime}=-y$ and order
Linear: if y_{1} and y_{2} solve the equation then so does any linear combination of y_{1} and y_{2} (i.e. $a y_{1}+b y_{2}$ for constants a and b). Verify this!

EXAMPLES:

LINEAR	NON LINEAR
$y^{\prime}=2 x y$	$y^{\prime}=2 x y^{2}$
$y^{\prime}=y \cdot \cos x$	$y^{\prime}=x \cdot \cos y$
$y^{\prime \prime}=1+y^{\prime}$	$y^{\prime \prime}=\sqrt{1+\left(y^{\prime}\right)^{2}}$

THEOREM (EXISTENCE AND UNIQUENESS FOR LINEAR EQUATIONS)
The IVP $\quad \frac{d y}{d x}+P(x) y=Q(x), y\left(x_{0}\right)=y_{0}$
has one and only one solution provided the functions P and Q are continuous near (x_{0}, y_{0}). The solution is defined for all x where P and Q are continuous.

Compare

$$
y^{\prime}=y, y(0)=1 \quad \text { linear, solution defined in }(-\infty, \infty)
$$

with

$$
y^{\prime}=y^{2}, y(0)=1 \quad \text { nonlinear, solution defined in }(-\infty, 1)
$$

METHOD OF SOLUTION FOR IST ORDER LINEAR EQS

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

1) Compute $p(x)=\exp \left(\int P(x) d x\right) \quad$ "integrating factor"
2) Multiply the equation by the integrating factor

$$
\frac{d y}{d x} \exp \left(\int P(x) d x\right)+P(x) \exp \left(\int p(x) d x\right) y=Q(x) \exp \left(\int p(x) d x\right)
$$

3) Rewrite as

$$
\frac{d}{d x}\left(y \cdot \exp \left(\int P(x) d x\right)\right)=Q(x) \exp \left(\int P(x) d x\right)
$$

4) Integrate both sides (if you can...)

EXAMPLE: $\frac{d y}{d t}=\frac{3}{t} y+t^{5}$
This equation is NOT SEPARABLE!
But it is 1st order linear:

$$
y^{\prime}-\frac{3}{t} y=t^{5}
$$

Integrating factor: $\exp \left(-\int \frac{3}{t} d t\right)=\exp (-3 \ln t)=t^{-3}$ in no need for C
Multiply the equation by the integrating factor:

$$
\begin{aligned}
& \left.t^{-3} y\right)-3 t^{-4} y=t^{2} \\
& \left(t^{-3} y\right)^{\prime}=t^{2} \\
& t^{-3} y=\frac{t^{3}}{3}+C \\
& y=\frac{t^{6}}{3}+C t^{3}
\end{aligned}
$$

$$
\text { EXAMPLE: } y^{\prime}+2 x y=x
$$

Notice that the eq. is both 1st order linear and separable. We can solve it in two different ways.

Solution 1: integrating factor

$$
y^{\prime}+2 x y=x
$$

Int. factor: $\exp \left(\int 2 x d x\right)=e^{x^{2}}$
Multiply eq. by the int factor:

$$
\begin{aligned}
& e^{x^{2}} y^{\prime}+2 x e^{x^{2}} y=x e^{x^{2}} \\
& \left(e^{x^{2}} y\right)^{\prime}=x e^{x^{2}} \\
& e^{x^{2}} y=\int x e^{x^{2}} d x=\frac{e^{x^{2}}}{2}+C \\
& y=\frac{1}{2}+C e^{-x^{2}}
\end{aligned}
$$

SOLUTION 2: Separation of variables

$$
\begin{aligned}
& \frac{d y}{d x}+2 x y=x \\
& d y=x(1-2 y) d x \\
& \int \frac{d y}{1-2 y}=\int x d x=\frac{x^{2}}{2}+C \quad \text { we have missed } \\
& \frac{-1}{2} \ln |1-2 y|=\frac{x^{2}}{2}+C \\
& 1-2 y= \pm \exp \left(-x^{2}+C\right) \text { new } C=-2 \text { (previous) } y=\frac{1}{2}
\end{aligned}
$$

$1-2 y=C e^{-x^{2}} \sim$ covers the possibilities $\pm e^{c}$ and $c=0$, that is $y=\frac{1}{2}$,

$$
y=\frac{1}{2}+C e^{-x^{2}}
$$

which we missed when dividing by $\frac{1}{1-2 y}$

EXAMPLE: Regarding x as a function of y, solve the equation

$$
\left(1-4 x y^{2}\right) \frac{d y}{d x}=y^{3}
$$

Notice that if we try to solve for y the eq is not separable and not linear. However if we try to solve for x then it becomes linear.

$$
\begin{equation*}
\left(1-4 x y^{2}\right) \frac{d y}{d x}=y^{3} \Rightarrow \frac{d x}{d y}=\frac{1-4 x y^{2}}{y^{3}} \Rightarrow \frac{d x}{d y}+\frac{4}{y} x=\frac{1}{y^{3}} \tag{I}
\end{equation*}
$$

Integrating factor: $\exp \left(\int \frac{4}{y} d y\right)=\exp (4 \ln y)=y^{4}$
Multiply (I) by the integrating factor:

$$
\begin{aligned}
& y^{4} \frac{d x}{d y}+4 y^{3} x=y \\
& \frac{d}{d y}\left(y^{4} x\right)=y \\
& x=y^{-4} \int y d y=y^{-4}\left(\frac{y^{2}}{2}+C\right) \\
& x=\frac{1}{2 y^{2}}+\frac{C}{y^{4}}
\end{aligned}
$$

EXAMPLE: $y^{\prime}+y=2 \sin x$
Look at the slope field!
Integrating factor: $\exp \left(\int 1 d x\right)=e^{x}$
Multiply the equation by the integrating factor:

$$
\begin{aligned}
& e^{x} y^{\prime}+e^{x} y=2 e^{x} \sin x \\
& \left(e^{x} y\right)^{\prime}=2 e^{x} \sin x \\
& e^{x} y=\int 2 e^{x} \sin x d x
\end{aligned}
$$

Can integrate by parts twice:

$$
\begin{aligned}
& \int 2 e^{x} \sin x d x=\int 2 \sin x d\left(e^{x}\right)=2 e^{x} \sin x-\int 2 e^{x} \cos x d x \\
&=2 e^{x} \sin x-\left[2 e^{x} \cos x-\int 2 e^{x}(-\sin x) d x\right] \\
& \Rightarrow 4 \int e^{x} \sin x d x=2 e^{x}(\sin x-\cos x)
\end{aligned}
$$

Back to (I):

$$
\begin{aligned}
& e^{x} y=e^{x}(\sin x-\cos x)+c \\
& y=\sin x-\cos x+c e^{-x}
\end{aligned}
$$

EXAMPLE: regarding x as a function of y, solve the equation

$$
(1+2 x y) \frac{d y}{d x}=1+y^{2}
$$

Try plotting the slope field. Solving for x instead of y amounts to parametrizing the curves on a different coordinate system. What is the advantage of doing this? If y is the dependent variable, the eq. is NOT LINEAR nor separable. If x is the dependent variable, then the eq is linear, therefore solvable.

$$
\begin{equation*}
(1+2 x y) \frac{d y}{d x}=1+y^{2} \Rightarrow\left(1+y^{2}\right) \frac{d x}{d y}=1+2 x y \Rightarrow \frac{d x}{d y}-\frac{2 y}{1+y^{2}} x=\frac{1}{1+y^{2}} \tag{I}
\end{equation*}
$$

Integrating factor: $\exp \left(\int \frac{-2 y}{1+y^{2}} d y\right)=\exp \left(\int \frac{-d u}{u}\right)=\exp \left(-\ln \left(1+y^{2}\right)\right)=\frac{1}{1+y^{2}}$.

$$
\begin{aligned}
& 1+y^{2}=u \\
& 2 y d y=d u
\end{aligned}
$$

always $\geqslant 0$,
so no abs. value
needed

Multiply (I) by the integrating factor:

$$
\begin{align*}
& \left(\frac{1}{1+y^{2}}\right) \frac{d x}{d y}-\frac{2 y}{\left(1+y^{2}\right)^{2}} x=\frac{1}{\left(1+y^{2}\right)^{2}} \\
& \frac{d}{d y}\left(\frac{x}{1+y^{2}}\right)=\frac{1}{\left(1+y^{2}\right)^{2}} \\
& \Rightarrow x=\left(1+y^{2}\right) \int \frac{d y}{\left(1+y^{2}\right)^{2}} \tag{II}
\end{align*}
$$

The integral $\int \frac{d y}{\left(1+y^{2}\right)^{2}}$ is tricky. There are two ways of doing it.
A) Trigonometric substitution

$$
\begin{aligned}
\int \frac{d y}{\left(1+y^{2}\right)^{2}} & =\int \frac{\left(1+y^{2}\right) d \theta}{\left(1+y^{2}\right)\left(1+\tan ^{2} \theta\right)}=\int \cos ^{2} \theta d \theta \\
y & =\tan \theta \\
d y & =\left(1+\tan ^{2} \theta\right) d \theta \quad \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& =\left(1+y^{2}\right) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \int \cos ^{2} \theta-\sin ^{2} \theta d \theta=\int \cos 2 \theta d \theta=\frac{1}{2} \sin 2 \theta+C \\
& \int \cos ^{2} \theta+\sin ^{2} \theta d \theta=\int 1 d \theta=\theta+C \\
& \Rightarrow \int \cos ^{2} \theta d \theta=\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta+C
\end{aligned}
$$

Back to the original integral

$$
\begin{aligned}
\int \frac{d y}{\left(1+y^{2}\right)^{2}}=\int \cos ^{2} \theta d \theta=\frac{1}{2} \theta+\frac{1}{2} \sin \theta \cdot \cos \theta+C= & \frac{1}{2} \tan ^{-1} y+\frac{y}{2\left(1+y^{2}\right)}+C \\
y=\tan \theta & y=\tan \theta \\
& 1+y^{2}=\cos ^{2} \theta \\
& \Rightarrow \sin \theta \cos \theta=\frac{y}{1+y^{2}}
\end{aligned}
$$

B) Recursion + integration by parts

$$
\begin{aligned}
\frac{1}{\left(1+y^{2}\right)^{2}}=\frac{1}{1+y^{2}}-\frac{y^{2}}{\left(1+y^{2}\right)^{2}} \Rightarrow \int \frac{d y}{\left(1+y^{2}\right)^{2}} & =\int \frac{d y}{1+y^{2}}-\int \frac{y}{2} d\left(-\frac{1}{1+y^{2}}\right) \\
& =\tan ^{-1} y-\left[\frac{y}{2}\left(-\frac{1}{1+y^{2}}\right)-\int\left(-\frac{1}{1+y^{2}}\right) \frac{d y}{2}\right] \\
& =\frac{1}{2} \tan ^{-1} y+\frac{y}{2\left(1+y^{2}\right)}+C
\end{aligned}
$$

Back to the differential equation (II):

$$
\begin{aligned}
& x=\left(1+y^{2}\right) \int \frac{d y}{\left(1+y^{2}\right)^{2}}=\left(1+y^{2}\right)\left[\frac{1}{2} \tan ^{-1} y+\frac{y}{2\left(1+y^{2}\right)}+C\right] \\
& x=\frac{1}{2} y+\frac{1}{2}\left(1+y^{2}\right) \tan ^{-1} y+C\left(1+y^{2}\right)
\end{aligned}
$$

