1.5B FIRST-ORDER LINEAR EQUATIONS

MIXING PRobLEM 1: A vat contains 60 L of water mixed with 5 kg of salt. A salt water solution that contains 2 kg of salt per liter enters the tank at a constant rate of $3 \mathrm{~L} / \mathrm{min}$. Pure water is also flowing into the vat at a rate of $2 L / \mathrm{min}$. The solution is kept well mixed and leaves the vat at a rate of $5 \mathrm{~L} / \mathrm{min}$. How much salt remains after 30 minutes? What is the long term behavior?
what is the goal? If $s(t)$ denotes the amount of salt (in kg) after t minutes, then we are looking for $s(30)$.

What information do we have?
$s(0)=5 \quad s^{\prime}(t)=2 \cdot 3-5 \cdot \frac{s(t)}{60}$, the vat always has 602 of water
PLAN: solve the 1st-order linear equation for $s(t)$ (there will be a free parameter C), use $s(0)=5$ to solve for C and compute $s(30)$.
$s^{\prime}+\frac{s}{12}=6 \quad$ Integrating factor $\exp \left(\int \frac{d t}{12}\right)=\exp \left(\frac{t}{12}\right)$

$$
\begin{aligned}
\Rightarrow & e^{t / 12} s^{\prime}+\frac{e^{t / 22} s}{12}=6 e^{t / 12} \Rightarrow\left(e^{t / 12} s\right)^{\prime}=6 e^{t / 12} \Rightarrow e^{t / 12} s=72 e^{t / 12}+C \\
\Rightarrow s(t) & =72+C e^{-t / 12} \\
s(0)=5 \Rightarrow 5=72+c & \Rightarrow c=-67 \Rightarrow s(t)=72-67 e^{-t / 12} \quad s(30)=66.5
\end{aligned}
$$

ANSWER: after 30 min , there will be 66.5 kg of salt in the tank. The amount of salt approaches 72 kg . Draw the graph.

$$
\begin{aligned}
& y^{\prime}=6-y / 12 \\
& y=2+c e^{-t / 12} \\
& y^{\prime}=-\frac{c}{12} e^{-t / 12} \\
& y^{\prime}+\frac{y}{12}=-\frac{c}{12} e^{-t / 12}+\frac{2}{12}+\frac{c}{12} e^{-t / 12}
\end{aligned}
$$

MIXING PROBLEM 2:-A 400 -gallon tank contains 200 gallons of water with 3 pounds of salt per gallon. Water flows into the tank at 6 gallons per minute, containing 5 pounds of salt per gallon. Water flows out of the tank at 4 gallons per minute. How much salt is there in the tank when it is full?

When is the tank full? After 100 min . $\frac{200 \mathrm{gal}}{2 \mathrm{gal} / \mathrm{min}}$
$s(t)=$ pounds of salt after t min WANT: $s(100)$
kNOW: $s(0)=600, \quad s^{\prime}(t)=6 \cdot 5-4 \cdot \frac{s(t)}{200+2 t}$ volume of water in the tank at time t
PLAN: solve the eq for $s(100)$.

$$
s^{\prime}+\frac{2}{100+t} s=30
$$

Int factor $\exp \left(\frac{2 d t}{100+t}\right)=\exp (2 \cdot \ln (100+t))=(100+t)^{2}$
Multiply: $(100+t)^{2} s^{\prime}+2(100+t) s=30(100+t)^{2} \Rightarrow\left((100+t)^{2} s\right)^{\prime}=30 \cdot(100+t)^{2}$

$$
\begin{aligned}
& \Rightarrow(100+100)^{2} s(100)-(100+0)^{2} s(0)=\int_{0}^{100} 30(100+t)^{2} d t=10\left(200^{3}-100^{3}\right) \\
& \Rightarrow s(100)=200^{-2}\left[10\left(200^{3}-100^{3}\right)+100^{2} \cdot 600\right] \\
&=100(200-50)+150 \\
&=1800
\end{aligned}
$$

