1.6B 5	ubst	itution	n met	thods and	l homog	eneous	equation	ons				· · · ·	
				als can be					• • •	• • •			
			-	their com					^u du,∫	$\frac{dx}{4+x^2}$	etc	· · · · ·	
2) Ir	tegro	ls that	t can	be convert mydy, S	ted into	an easy	integral	by a	substitu			by part	ts, partial
				These have					- !C-	• • • •	· · · · ·	· · · · ·	· · · · · · ·
				lassify th		•						· · · · ·	· · · · · · ·
	•			ch there					•				
a)Eg	uatio	ns the	xt can	be transfe	ormed int	o an eg	fuation	of The	tirst 1	type by	reation	iging, ch	lange of
variables	;, inte	egratin	g fac	.tor						• • • •			
3)AI	l otl	ver equ	ation	5 .						• • • •			
Section	1.6	deals	with	equations	of the	second	type.			• • • •			
			• •										
	• •		• •			• • •		• • •		• • • •			

EXAMPLE XY"-	$-y^{1} = 3x^{2}$ $y = x^{3} + Cx^{2} + D$	•
Notice that .	there is no y in the eq. Can solve for y' first, then integrate to find y.	
If y' is th	ne unknown function, the eq. is 1st order linear:	•
$y'' = \frac{4}{x}y'$	= 3x	•
Int. factor	$\exp\left(\int \frac{-1}{x} dx\right) = \exp\left(-\ln x\right) = \frac{1}{x}$	٠
		•
Multiply	$\frac{1}{x}y'' - \frac{1}{x^2}y' = 3$	•
	$\left(\frac{1}{x}y'\right)' = 3x + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + $	
	$\frac{1}{x}y' = 3x + C$	•
	$y'(x) = 3x^2 + Cx$	•
	$y(x) = x^3 + \frac{Cx^2}{2} + D$ different integration, different constant!	
		•
		•
		٠

EXAMPLE: solve $z \frac{dy}{dx} - 4z^{2}$	y + 2y ln y = c	by	means	of the	substitution	v = ln	y	· · · · · · ·
$v = \ln y$ $dv = \frac{dy}{y}$								
dy 11 2	0 = 1 + 1 = 1							· · · · · ·
$z \frac{dy}{dx} - 4z^2y + 2y$	xny -0							
a et du har v	17 · · · · · ·	• • •						
$\chi \frac{e^{\nu}d\nu}{d\chi} - 4\chi^2 e^{\nu} + 2e^{\nu}$	2 V = 0							
Cancel e ^v , divide by x	• • • • • • •							
- ·	st order linear	· · · ·	solve with	intearo	ting factor			
$\frac{dv}{dx} + \frac{2}{x}v = 4x 1$				in micaro				· · · · · ·
$v = x^2 + \frac{C}{x^2}$								
Back to $v = ln y$								
	· · · · · · · ·							· · · · · · ·
$\ln y = x^2 + \frac{C}{x^2}$								• • • • • •
$y = exp(x^2 + \frac{C}{x^2})$								
$\sigma = c_{AF}(c_{A}, z_{A})$								· · · · · · ·

	orm y'=f(x,y) is HOMOGENEOUS if f(ax,ay)=f(x,y) for									
every a>0.										
EXAMPLES										
HOMOGENEOUS	NOT HOMOGENEOUS									
(x+y)dx - (x-y)dy = 0	(x+y)dx - (x-y+1)dy = 0									
xy' = 2x + 3y	$x^2 y' = 2x + 3y$									
$\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$	$\frac{dy}{dx} = \frac{x^2 + xy + y^3}{x^2}$									
$y_{i}^{\prime} = \frac{x}{4} + \frac{y}{4}$	$xy' = \frac{4}{5} + \frac{x}{5}$									
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									
	· · · · · · · · · · · · · · · · · · ·									
	· · · · · · · · · · · · · · · · · · ·									

HOW TO SOLVE HOMOGENEOUS EQUATIONS						· · · ·
Let $v = \frac{y}{x}$, change variables from (x,y) to (x,v)	. In	the	(x,v)	variables	, the	eq.
becomes separable.						
EXAMPLE: $y' = \frac{y}{x} + \frac{x}{y}$	••••				· · ·	
Let $v = \frac{y}{x}$. Then $\frac{dy}{dx} = \frac{d}{dx}(xv) = x\frac{dv}{dx} + v$.	· · ·	· · · ·	· · ·	· · · · · ·	· · · ·	· · · · ·
Rewrite 🐼 in terms of (x, v):						
$x \frac{dv}{dx} + v = v + \frac{4}{v} \implies \frac{dv}{dx} = \frac{1}{xv}$ Separable	· · ·		· · ·	· · · · · ·	· · ·	· · · · ·
Solve for v:						
$v dv = \frac{dx}{x} \implies \frac{v^2}{a} = \ln x + C \implies v = \pm \sqrt{\ln (x^2) + C}$	· · ·		· · · ·			· · · · ·
Revert to the (x,y) variables:						
$\frac{y}{x} = \pm \sqrt{\ln(x^2) + C} \implies y = \pm x \sqrt{\ln(x^2) + C}$				· · · · · ·		· · · ·
· · · · · · · · · · · · · · · · · · ·					• • •	

EXAMPLE: (x+y) dx - (x-y) dy = 0	•
Is it exact? $\frac{2}{3y}(x+y) = \frac{2}{3x}[-(x-y)]$ NOT EXACT	•
But it is homogeneous: $\frac{dy}{dx} = \frac{x+y}{x-y} = \frac{ax+ay}{ax-ay}$ for any a >0.	•
Since it's homogeneous, the substitution $v = \frac{4}{x}$ turns it into a separable eq. $y = xv \implies \frac{dy}{dx} = x\frac{dv}{dx} + v$	•
Rewrite the eq. in terms of (x, v) : $x \frac{dv}{dx} + v = \frac{x + xv}{x - xv}$	
Solve for ψ : $\frac{d\psi}{dx} = \frac{1+\psi}{1-\psi} - \psi = \frac{1+\psi^2}{1-\psi} \implies \frac{1-\psi}{1+\psi^2} d\psi = \frac{dx}{x}$	•
$\implies \int \frac{dv}{1+v^2} - \int \frac{v}{4+v^2} dv = \ln x + C$	
$\Rightarrow \arctan v - \frac{1}{2}ln(1+v^2) = lnlx1+C$ (implicit solution)	•
Revert to (x,y) variables:	•
$\arctan \frac{g}{\chi} - \frac{1}{2} ln \left(1 + \frac{g^2}{\chi^2}\right) = ln \chi + C (implicit)$	
Can simplify further: arctan $\frac{1}{2}$ - $\ln \sqrt{x^2 + y^2} = C$	•
	•