2.1 2.2 Population models, equilibrium solutions and stability
GOAL: predict the number of individuals in a population (bacteria in a Petri dish, fish in a pond,
rabbits in a wood, people in a country) by coming up with a function P(t) that matches observations
MODEL 1: EXPONENTIAL GROWTH
P'= kP for some k>0 (a parameter of the model) that has to be determined experimentally
Fits data for bacterial population in a controlled environment with unlimited food.
What is the intuition behind? Each individual generates k offspring per unit of time, on average.
MODEL 2: LOGISTIC EQUATION
P' = (a - bP)P for some $a, b > 0$
Idea: the average offspring per capita is basically constant when the population is small
but decreases when the population increases.
Not realistic, but predicts that the population grows exponentially when small, then the growth
slows down, then the population converges to a certain value.
MODEL 3: EXTINCTION-EXPLOSION
p' = (-a+bP)P for some $a, b > 0$
Idea: births occur whenever two individuals meet.

QUALITATIVE STUDY OF DIFFERENTIAL EQUATIONS	
Consider $P' = f(p)$. What can we say about p without SOL	VING THE EQUATION ?
→ equilibrium solutions are the zeros of f → any solution increases or decreases to an equilibrium or to t	$\pm \infty$
EXPONENTIAL $f(p) = kp$	· · / · · · · · · · · · · · · · · · · ·
SLOPE FIELD	· · · · · · · · · · · · · · · · · · ·
	PHASE DIAGRAM
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	

LOGISTIC EQUATION p' = p(1-p)	EXPLOSION - EXTINCTION p' = p(p-1)
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

C	Cl	A	55	511	FIC	CA:	ŤI	ÖN	J .	0	F [E	Qı	λL	- 16	3R	ζIU	M	•	Sc)LV	TI	ON	5			•	•	0	•	•	•	•	•			•	•	•		•	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•
•		y		f	6		is		ol	اما		0		A ti	ita	nO'	YM(MC		001	uat	io	n	1:			da			at.			e n	م			+						•					•	•		•				
•		Ē																														Ĵ	- 	u .		•							•	•	•	•	•	•	•		•	•	•	•	
		A	.1	UM	nb	er		Pa	j	5.	0.	С	;ri	tic	al	19	po	int	t . (of	#	e.	e g	WC	ti	on	. i-	F	f((g)	= (0.		•				•			•														
•	-	E 4	•	P.	, i	5	.a	C	rit	tic	a		po	oin	t,	th	ne	. C	on	st	and	t	fu	nc	tio	n	F	6) =	=P		is	5 .(cal	lle	d	an		eq	Jili	br	iun	N - S	solu	, ti	0 n.	•	•	•	•	•	•	•	•	•
•		A	C	fit	ii Ci	al	. P	001	nt	i.	ح	S	Oi(d	te	> .	b	e	S ¹	tal	ble	.i	t ;	Sc	olut	lio	n S		th	at	S	ta	đ.	c	05	e	to		t	Co	NV	erg	e -	to	it	•	•	•	•	•	•	•	•	•	•
•		٨		بار.				اس		•		2.01	• 1	-		Ľ					bl		• C			•			•	+~	Ĺ			٠			•	•	•	•	•		٠	٥	٠	٠	•	•	•	•	•	•	•	•	•
·		-	CT	1.11	Cu	и	90	nu l		15		5 00	10		0	0	ie	. U	112	510	10 1		14	ł	1.1	5	. Y U	DI	. 2	, ia	.D.U	5	•	•	•		•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•
•			•	•		•	•	•	•	•	•		•	•	•			•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•			•	•	•		•			•	•	•	•	•	•	•	•	•	•	•	•
E	EX	EÍ	SC.	15	E:	cl	as	sif	y.	t	n e	C	ri	tic	al	Ņ	<i>i</i> al	ve	5	in	<u>a</u>	II.	of	-	the	1	pre	vic) .v.s	5.	ex	an	np	les	. .			•	•		•														
						•			•														٠		•				•					•					•						٠										
						•		•	۰				•							٠		•	٠				•		•					•			•	•	•	•	•		•	•	٠									•	
•			•			•	•		٠		•									٠	•	•		•	٠		•	•	•					٠			•	•	•	•	•		•	•	٠			•		•	•		•	•	
•			•			•	•				•		•	•	•	•		•	•		٠	•	•	•	•		•	•	•		٠	•	٠	•			•	•	•	•	•		•	٠	٠	•	•	•	•	•	•	•	•	•	•
•			•	•		•	•		•	•	•		•	•	•	•		•	•	•		•	•	•	•		•	•	•	•	•	•		•			•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
٠			•	•		•	•	•	•	•	•		•		•	•		•	•	•		•	٠		•		•	•	•	•	•	•	•	•			•	•	•	•	•		•	٠	٠	•	•	•	•	•	•	•	•	•	•
•			•	•		•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•			•	•	•	•	•	• •	•	•	٠	٠	•	•	•	•	•	•	•	•	•
•			•	•		•	•		٠	•	•		•	•	•	•		•	•	٠		•	•	•	۰		•	•	•	•	•	•	•	•	•		•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•
•			•	•		•	•	•	•	•	•			•	•			•	•	•	•	•	•	•	•		•	•	•		•	•	•	•			•	•		•	•		•	•	•	•	•	•			•		•	•	•
•						•					•			•						•	•		•						•					•					•						•									•	
						•																															•	•	•		•														
						•			۰																													•	•		•														
						•			٠		•											•			•		•		•					•			•	•	•		•														
						•			٠											٠	٠		٠		•									•				•	•		•			٠	٠										
																											•										•			•															
						•			٠																•		•	•						•			•	•	•		•													•	
						•			٠									•	•	•		٠			٠		•	•	•								•	•	•		•			•	٠	•				•	•	•	•	•	
						•			٠				•						•	•		•	•		•		•		•			•		•			•	•	٠		•	• •				•		•	•	•	•	•	•	•	•
			•			•	•		•				•					•	•	•		•					•	•	•								•	•	•	•	•			•		•	•	•	•	•	•	•	•	•	•
						•	•	•		•			•	•	•			•	•								•	•	•		•	٠		•			•		•				•		•			•	•	•	•	•	•	•	•

PROBLEM (LO	GISTI	C POPU	LAT	ION W	П	HARV	EST)			• •		•	••••					•	· ·	•		•			•	
Consider 1	the out	tonomous	 5 pc	untion	٠	• • •	• •	٠	• •	0 0	• •	٠	• •	• •	•	• •	• •	۰	• •	0	• •	٠			•	• •
				+	•			•	• •			•	• •	• •				•	• •	•				•		
dx 1																										
$\frac{dx}{dt} = \frac{1}{10}$	X(10-	-X) - ħ								• •	• •	٠					• •			•						
x(o) = 3	3																			•						
· · · · · ·	· ·	· · ·	· · ·			· · ·		•		• •		•	• •		• •			•	• •			•		•	•	
where h?	>0. h	or whic	h va	lues of	i h	does	the	so	lutio	n ev	<i>ientu</i>	ally	rea	che	5 2	ero	?	٠	• •		• •				٠	0 0
Let us	first	sketch	the	graphs	10	f(x) -	- h :=	= 4	x(10-	x)-	h	and	the	e pl	nase	dia	igra w	of	the	e	gua	tion	n	•	•	• •
					- 1			10									u				- Х	'=f	[!] (x)	- h	•	
						, f(x)																				
		• • •																								
								R=0	• •	• •	• •	•			•					•						
								n-0	• •	• •										•	• •					
						· · · ·	1 - A	R ST	in 1																	
		• • •									• •				•					•		•				
	• •	• • •		• • •		. / .				• •	• •	٠			•		• •	•		•	• •	•		•		• •
	• •								·				<u> </u>						• •		• •					• •
	• •		• •			/ // ·			10			•	• •							•						• •
					- · ·	 .			-	r = r	• •			• •	• •		• •			•		•		•	•	
					. •	/			big f		• •		• •		•		• •			•	• •	•	• •	•	•	• •
						[.			org	n	• •	•	• •		•		• •			•	• •	•	• •	•	•	• •
			• •									•		• •	•	• •	• •		• •	•	• •	•	• •	•	•	• •
			• •			.		•				•	• •		•	• •	• •		• •	•	• •	•	• •	•	•	• •
					•						• •	•	• •	• •	•		• •		• •	•	• •	•	• •	•	•	• •
			• •		•			•	• •	• •	• •	٠	• •	• •	•	• •	• •		• •	•	• •	•	• •	•	•	• •
				· · ·		<u>, , , ,</u>		<u>>-</u>			<u>.</u>			• •	•					•		•	• •		•	• •
							. .	•												•					•	
													• •									•			•	
																				•						• •
					• • • • •	<u>,</u>				·.· · ·.·																• •

We are looking for h -	that makes	one	of	these	pho	se	diag	ram	5:	••••	•		•	•	•	• •	•	•	• •	•	• •	•
· · · · · · · · · · · ·		• •	•			•	•	• •	•	• •		• •			•		•	•	• •	•		٠
3	· · · · · · ·		•		• •	•	•		•	• •	•		•	•	•		•	•		•		•
						•		• •	•	• •	٠					• •				٠		
·	<u></u> · · ·	• •			• •		•	• •		• •	•		٠				٠		• •	٠		
			•			•		• •		• •	•					• •	•	•	• •	•		
		• •	•		• •	•	•	• •	•	• •					•		•	•		•	• •	
· · · · · · · · · · · · ·	· · · · · · ·		•			•	•		•		•			•	•			•				
· · · · الد · · · · · · · · · · · ·	· · · · · · · ·	0.1													•							
In other words, the smalles	st solution o	+ 10	X.(1()-X)-1	h =0	, 15	?:	5.	•						•	• •						
What are the solutions of	$f = \frac{1}{x}(10-x)$	-h=	0	າ	• •	•	•	• •	٠	0 0	٠	• •	٠	٠	٠	• •	٠	•	• •	0		
	10	. •• .		••••		•	•	• •	•	• •	٠	• •	•	•	•	• •	•	•	• •	٠		
$\frac{4}{10} \times (10 - \chi) - h = 0$							•		•						•							
x ² -10x+10h =0					• •		•								•							
			•			•		• •							•							
$x = \frac{4}{a} \left(10 \pm \sqrt{100 - 40h} \right)$	· · · · · · ·	• •			• •	•	•	• •	•	••••	•	• •	•	•	•	• •	•	•	• •	•	••••	
So we need $\frac{1}{2}(10 - \sqrt{1})$	00-406)>	, २ .	•			•		• •														
Jo we need 2 (to V		Y .			• •	•	•	• •	•	• •				•	•	• •	•	•				
$= \sqrt{100 - 40 h} <$	ζ 4	• •				•	•	• •	•	• •	٠	• •	•	•	•	• •	•	•	• •	٠	• •	•
<u>.</u>					• •			• •	•	• •	•				•		•			•		
$\Rightarrow 100 - 40 h < 4$	16		•																			
=> h > 2.1						•	•	• •	•	· ·	•	• •	•	•	•	• •	•	•		•		
ANSWER: the solution rea		· · ·				•		• •	•						•	• •						
	ches 0 wh	en v	1.7	α· 1.	• •	•	•	• •	•	0 0	٠				•	• •	•	•		٠		
			•			•	•			• •	•							•	• •	•		

Let's check the answer by graphing	$\frac{1}{10} \times (10 - x) - h$	and the	phase	diagram of	$\frac{dx}{dt} = \frac{1}{10}$	$5 \times (40 - x) - h$
(do an accurate plot by computer)		· · · · · ·		· · · · · · ·		
1 40 ×(40-×)	- 2.1		• • •			
	h slightly bige	the second	2° 4			
	h slightly bigg	jer man i	X. 1			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·					
	11.8					
		· · · · ·			· · · ·	
		· · · · ·				
		· · · · ·				
		. 3 is a	critico	l value		
· · · · · · · · · · · · · · · · · · ·						
		· · · · ·				
· · · · · · · · · · · · · · · · · · ·	······································	solution	n that	starts at 3	decreases	s to -00
······································						

BIFURCATIONS
Consider the one-parameter family of autonomous equations
$p' = f_{R}(p)$
(for each number h, a different equation)
DEFINITION: a number he is said to be a bifurcation point (for the family p'=fr(p)) if the number of
critical values of p'=fr(p) for h near hr is different from the number of critical values of
$p' = f_{R_{*}}(p).$
DEFINITION: the bifurcation diagram for the family $p' = f_R(p)$ is a graph of the critical values of $p' = f_R(p)$ (i.e. the zeros of against h). It may not be the graph of a function!
EXAMPLE: bifurcation diagram for $x' = \frac{1}{10} \times (10 - x) - h =: f_{h}(x)$
zeros of fr. Given h, what are the zeros of fr.?
$0 = \frac{10}{10} \times (10 - x) - R$
$x = \frac{4}{2} (10 \pm \sqrt{100 - 40 h})$
2 critical values for R<2.5, 1 critical value for R=2.5, no critical value for R>2.5
h = 2.5 is a bifurcation point

EXAMPLE: bifurcation diagram for $p' = hp - p^3$ zeros of $hp - p^3$	Given	h, whi	ch P	make	hp-p ³ :	=0 ?
	p=0	alway	s wor	ks		
· · · · · · · · · · · · · · · · · · ·	if]	p ≠0	and	$hp - p^3$	=0+	hen p ² =h
		• • •	• • •	• • •	• • •	
	• • •	• • •	• • •		• • •	
a a transformation and a second s		• • •	• • •	• • •	• • •	
	• • •		• • •			
		• • •	• • •	• • •	• • •	
· · · · · · · · · · · · · · · · · · ·						
1 critical value for h < 0, 3 critical values for h > 0						
O is a bifurcation point		• • •	• • •		• • •	
	• • •				• • •	
	• • •	• • •		• • •	• • •	
Google 'bifurcation diagram' to see some cool pictures	• • •				• • •	
· · · · · · · · · · · · · · · · · · ·						
	• • •		• • •			
	• • •				• • •	
a a a a a a a a a a a a a a a a a a a					• • •	