2.3 ACCELERATION-VELOCITY MODELS

PROBLEM 1: A motorboat is moving at $40 \mathrm{ft} / \mathrm{s}$ when its motor quits, and 10 s later its speed is $20 \mathrm{ft} / \mathrm{s}$. Assuming the resistance is proportional to the square of the velocity, how far does the motorboat coast in the first minute after its motor quits?

Let $v(t)$ be the speed of the motorboat (in ft / s) t seconds after its motor stops.
GOAL: compute $\int_{0}^{60} v(t) d t$.
GIVEN: $v(0)=40, \quad v(10)=20, \quad v^{\prime}(t)=-k v(t)^{2}$ for some $k>0$.
PLAN: solve $v^{\prime}=-k v^{2}$ (there will be two unknowns, K and C)
then use $v(0)=40$ and $v(10)=20$ to solve for k and C
then compute $\int_{0}^{60} v(t) d t$
EXECUTION OF THE PLAN: $\quad v^{\prime}=-k v^{2} \Rightarrow v^{-2} d v=-k d t \Rightarrow-v^{-1}=-k t+C \Rightarrow v=\frac{1}{k t+C} \quad C=-($ previous c)

$$
\begin{aligned}
& v(0)=40 \Rightarrow 40=\frac{1}{c} \Rightarrow c=\frac{1}{40} \\
& v(10)=20 \Rightarrow 20=\frac{1}{10 k+\frac{1}{40}} \Rightarrow 10 k=\frac{1}{20}-\frac{1}{40}=\frac{1}{40} \Rightarrow k=\frac{1}{400} \\
& \int_{0}^{60} v(t) d t=\int_{0}^{60} \frac{1}{\frac{t}{400}+\frac{1}{40}} d t=\left.\ln \left(\frac{t}{400}+\frac{1}{40}\right) \cdot 400\right|_{0} ^{t=60}=400 \ln 7 \approx 778.36
\end{aligned}
$$

ANSWER: The motorboat coasted for 778.36 ft in the first minute after its motor stopped.

Does the answer make sense?
If there was no resistance, the motorboat would coast for $40 \frac{\mathrm{ft}}{\mathrm{s}} \cdot 60 \mathrm{~s}=2400 \mathrm{ft}$ in one minute, which is much more than the 778.36 ft we found, and that makes sense.
We found for the speed of the motorboat the formula

$$
v(t)=\left(\frac{t}{400}+\frac{1}{40}\right)^{-1}
$$

starts at $40 \mathrm{ft} / \mathrm{s}$, drops to $20 \mathrm{ft} / \mathrm{s}$ in 10s, keeps dropping at ever slower rates, which makes sense

IS THE ASSUMPTION THAT RESISTANCE IS PROPORTIONAL TO THE SQUARE OF VELOCITY REASONABLE? We don't know. This has to be found by experiment. The problem we just solved and problem 3 in HW 11 suggest an experiment to find how resistance depends on speed.

PROBLEM 2: A woman bails out of an airplane at $10,000 \mathrm{ft}$, falls freely for 20 s , then opens her parachute. How long will it take her to hit the ground? Assume air resistance proportional to the speed, with constant of proportionality $0.15 / \mathrm{s}$ without the parachute and $1.5 / \mathrm{s}$ with the parachute. Assume constant gravitational acceleration of $32 \mathrm{ft} / \mathrm{s}^{2}$.

Let $v(t)$ be the donward speed in ft / s after t seconds of bailing out.
WANT : a time t_{0} such that $\int_{0}^{t_{0}} v(t) d t=10,000$.
GIVEN: $v(0)=0, \quad v^{\prime}(t)=\left\{\begin{array}{l}-0.15 v(t)+32, t<20 \\ -1.5 v(t)+32, t \geqslant 20\end{array}\right.$
PLAN:1)Solve $v^{\prime}(t)=-0.15 v(t)+32, v(0)=0$, compute $v(20)$.
2) Solve $v^{\prime}(t+20)=-1.5 v(t+20)+32$ with $v(20)$ computed in the first step.
3) compute $\int_{0}^{t_{0}} v(t) d t$ and solve for the t_{0} that makes this integral $10,000$.
executing the plan:

1) $v^{\prime}+0.15 v=32, v(0)=0$ LINEAR

Integrating factor $\exp \left(\int 0.15 d t\right)=e^{0.15 t}$
Multiply eq. by the int. factor, then integrate:

$$
\left(e^{0.15 t} v\right)^{\prime}=32 e^{0.15 t} \Rightarrow e^{0.15 t} v=\frac{32}{0.15} e^{0.45 t}+c \Rightarrow v=\frac{32}{0.15}+C e^{-0.15 t}
$$

Use $v(0)=0$ to find C and get $C=-32 / 0.15$.
Compute $v(20)=\frac{32}{0.15}-\frac{32}{0.15} e^{-3} \approx 202.71$
2) $v^{\prime}=-1.5 v+32, v(20)=202.71$

Solve as in step $1: v(t)=\frac{32}{1.5}+e^{-1.5(t-20)}\left(202.71-\frac{32}{1.5}\right)$ for $t \geqslant 20$

$$
v(t)=\left\{\begin{array}{l}
\frac{32}{0.45}\left(1-e^{-0.15 t}\right), t<20 \\
\frac{32}{1.5}+181.38 e^{-1.5(t-20)}, t \geqslant 20
\end{array}\right.
$$

3) Assume $t_{0}>20$. Then

$$
\begin{aligned}
\int_{0}^{t_{0}} v(t) d t & =\int_{0}^{20} \frac{32}{0.15}\left(1-e^{-0.15 t}\right) d t+\int_{20}^{t_{0}} \frac{32}{1.5}+181.38 \cdot e^{-1.5(t-20)} d t \\
& =\frac{32}{0.15} \times 20-\frac{32}{(0.15)^{2}}\left(1-e^{-0.15 \times 20}\right)+\frac{32}{1.5}\left(t_{0}-20\right)+\frac{181.38}{1.5}\left(1-e^{-1.5\left(t_{0}-20\right)}\right)
\end{aligned}
$$

Solving (on a computer) we find $t_{0} \approx 346$.
ANSWER: it takes approximately $5 \min 46 \mathrm{~s}$ for the woman to hit the ground.

PROBLEM 3 : A rocket of mass 10 kg is launched upward with initial velocity $20 \mathrm{~m} / \mathrm{s}$ from a platform that is 3 m high. Assume air resistance proportional to the velocity with constant $1 / \mathrm{s}$, and assume constant gravitational acceleration $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
A) Find the maximum height reached by the rocket.
B) How long does it take for it to reach the ground?

Let $v(t)$ be the upward velocity in m / s after t seconds of launching.
A) GOAL: compute $\int_{0}^{t_{0}} v(t) d t+3$, where $v\left(t_{0}\right)=0$.

GIVEN: if $t<t_{0}$ (rocket moving upward) then $\left\{\begin{array}{l}m v^{\prime}(t)=-v(t)-m g \text {, where } m=10, g=9.8 \\ v(0)=20 \text { if the units of measurement change, the equation }\end{array}\right.$
PLAN: 1) solve the IVP
2) Solve for t_{0} in $v\left(t_{0}\right)=0$
3) compute $3+\int_{0}^{t_{0}} v(t) d t=: h_{\text {max }}$ an the symbol $=$: means 'the thing on the right is DEFINED to be equal to the thing on the left'
B) Let $w(t)$ be the DOWNWARD speed, in $\mathrm{m} / \mathrm{s} . t$ seconds after reaching maximal height.

GOAL: find t_{1} such that $\int_{0}^{t_{1}} w(t) d t=h_{\text {max }}$, compute $t_{0}+t_{1}$
GIVEN: (IVF 2) $\left\{\begin{array}{c}m w^{\prime}(t)=-w(t)+m g \\ w(0)=0\end{array}\right.$
PLAN: 1) solve for w in (IVP P_{2})
2) solve for t_{1} in $\int_{0}^{t_{1}} w(t) d t=h_{\max }$ (we know $h_{\max }$ from the first part of the problem)

EXECUTING THE PLAN:
A) 1) $m v^{\prime}(t)=-v(t)-m g \Rightarrow v^{\prime}(t)+\frac{1}{m} v(t)=-g \Rightarrow v(t)=-m g+e^{-t / m}(v(0)+m g)$

Plugging $v(0)=20, m=10, g=9.8$, we get $v(t)=-98+e^{-t / 10}(20+98)=118 e^{-t / 10}-98$
2) Solve for to in $v\left(t_{0}\right)=0$:

$$
0=118 e^{-t_{0} / 10}-98 \Rightarrow t_{0}=-10 \cdot \ln \frac{98}{118} \approx 1.86
$$

3) Integrate speed to find distance traveled:

$$
3+\int_{0}^{1.86} 118 e^{-t / 10}-98 d t=1180\left(1-e^{-0.186}\right)-98 \times 1.86 \approx 21
$$

ANSWER TO (A): the maximum height attained by the rocket is approximately 21 m .
B) 1) $m w^{\prime}=-w+m g \Rightarrow w(t)=m g+e^{-t / m(w(0)-m g)}$

Plug $w(0)=0, m=10, g=9.8: W(t)=98-98 e^{-t / 10}$
2) Solve for t_{1} in $\int_{0}^{t_{1}} 98-98 e^{-t / 10} d t=21$

$$
98 t_{1}-980\left(1-e^{-t_{1} / 10}\right)=21
$$

$t_{1} \approx 2.14$ sm the time from maximum height to hitting the ground is $\approx 2.14 \mathrm{~s}$
Total time (going up + falling) $\approx 1.86+2.14=4$
ANSWER TO (B): it takes the rocket approximately 4 seconds to hit the ground.

