	ORDER LINEAR EQUATIONS The order of a diff.eq. is the order	of the highest derivative in the equation.
	inear diff. eq. has the form + $P_{2}(x) y^{(n-s)} + \dots + P_{n}(x) y = F(x)$	
for some $n \cdot I^2$ F(x) = 0 for all		x), P_(x),, P_(x) are constant functions. It is homogeneous if
EXAMPLES:	y'' + x y' + 3y = 0	2nd order linear homogeneous
· · · · · · · ·	$a_{,,}$ + $\times a_{,}$ + $3a = \times a_{,}$	and order linear, not homogeneous
		and order linear homogeneous constant coefficients
· · · · · · · ·	$yy' = x^2 + 2$	1st order nonlinear
· · · · · · · ·	sin(y'') - y' + 5y = 0	2nd order nonlinear
· · · · · · · ·	$y^{n1} + 3x^2 y' = 7x$	3rd order linear, not homogeneous
		<td< td=""></td<>

PRINCIPLE OF SUPERPOSITION: consider a linear homogeneous equation	
$P_{a}(x)y^{(n)} + P_{a}(x)y^{(n-1)} + \dots + P_{n}(x)y = 0$ (1)	•
If $y_1(x)$ and $y_2(x)$ solve \bigotimes then $Ay_2(x) + By_2(x)$ also does, for any constants A and B.	•
EXAMPLE: y" = - y	
$y_{a}(x) = sin x$ is a solution $y_{a}(x) = cos x$ is a solution $y_{a}(x) = cos x$ is a solution $y_{a}(x) = cos x$ is also a solution $y_{a}(x) = cos x$ is a solution $y_{a}(x) = cos x$.	•
Are there more solutions? Does Asimx + Bcosx include all possible solutions? The answer comes from the Existence and Uniqueness Theorem.	•
THEOREM (EXISTENCE AND UNIQUENESS): the IVP	•
$P_{0}(x)y^{(n)} + P_{1}(x)y^{(n-1)} + \dots + P_{n}(x)y = F(x)$, $y(x_{0}) = y_{0}$, $y'(x_{0}) = y_{1}$,, $y^{(n-1)}(x_{0}) = y_{n-1}$	
an a sanatu0 a tankanyi0 a sa a mana Masaya di Asaya da kana a da ta ngΩa sa saya da sa sa sa sa sa sa sa sa s	
has one and only one solution defined for x in the open interval I, provided Po(x),, Pn(x), F(x) are continuous in	Ņ
has one and only one solution defined for x in the open interval I, provided Po(x),, Pn(x), F(x) are continuous in	ņ
	Ņ
has one and only one solution defined for x in the open interval I, provided $P_o(x),, P_n(x), F(x)$ are continuous in I and x _o belongs to I. COROLLARY: for a linear equation of order n. the general solution has n parameters.	•
has one and only one solution defined for x in the open interval I, provided $P_0(x),, P_n(x), F(x)$ are continuous in I and x ₀ belongs to I. COROLLARY: for a linear equation of order n. the general solution has n parameters.	•
has one and only one solution defined for x in the open interval I, provided $P_0(x),, P_n(x), F(x)$ are continuous in I and x ₀ belongs to I. COROLLARY: for a linear equation of order n. the general solution has n parameters.	•
has one and only one solution defined for x in the open interval I, provided $P_{\alpha}(x),, P_{\alpha}(x), F(x)$ are continuous in I and x _o belongs to I. COROLLARY: for a linear equation of order n. the general solution has n parameters.	• • • • •

and ORDER HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS ay"+by'+cy = 0															•															
By other	the ex	istence on the	and 9 en	unig eral	lvene soli	ess stio	the n is	orem	if Ya(x	we) + C	can a Ya	fiv (x).	nd ti	NO.	501	ution	5	Ys(x), Y	2 (X)	that	ore	N	Τ	mut	tipl	les	of	eac	h
	ESS a (a	y(x) = (e ^{rx})" r ² +br	e ^{rx} +b(+c)(for erx erx	queness theorem, if we can find two solutions $y_{a}(x)$, $y_{a}(x)$ is solution is $C_{4}y_{4}(x) + C_{a}y_{a}(x)$. r some r to be determined. Plug into the equation, solve $y' + c(e^{rx}) = 0$ = 0 characteristic equation												•	· · ·	•	• • • • • •	· · ·	•	· · · · · · · · · · · · · · · · · · ·							
If	the	Charac ⁻	teristi	c e	quati	ion	has	two	di	stinc	t re	eal	root	د ک	then	we	hai	ve	ovr	two	So	lutio	n s .	· ·	•	•	· ·	•	· ·	•
• •				• •		•	• •		•	• •			• •	•	•	• •	• •	•		•	• •	• •	•	• •	•	•	• •	•	• •	•
• •				• •	• •	٠	• •		٠	• •			• •	٠	٠	• •		•		•	• •	• •	•	• •		•			• •	•
• •				• •		•	• •						• •	•	•		• •	•		•		• •	•			•		•	• •	
	• •																													
																		•				• •				•		•		•
• •	• •	• • •				•			•				• •		٠			•			• •	• •		• •	•	•		•	• •	•
• •	• •		• •			•			•					•	•						• •		•		•	•		•	• •	
						٠			٠						÷	• •						• •	•							٠
• •	• •		0 0			٠			٠						0	• •		•			• •	• •	٠	• •					• •	٠
• •																		•				• •				•				
	• •	• • •	• •	• •		٠			٠	• •	• •			•	٠	• •	• •	•		•	• •	• •	•	• •	•	•		•	• •	٠

EXAMPLE: Find the general solution of $2y^{*}-y=0$. The equation is second-order linear homogeneous with constant coefficients. It's characteristic equation is $2r^{2}-r-4=0$, whose zeros are $\frac{1\pm\sqrt{1-4\times2\times(-1)}}{4}=1$ or $-\frac{4}{2}$. Since the roots are distinct, the solutions $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-t/2}$ are LI. Therefore the general solution is $y(t) = Ae^{t} + Be^{-t/2}$														
EXAMPLE: Find the general solution of $6y^n - 7y^1 - 20y = 0$. The equation is second-order linear homogeneous with constant coefficients. It's characteristic equation is $6r^2 - 7r - 20 = 0$, whose zeros are $\frac{7 \pm \sqrt{49 - 4 \times 6 \times (-20)}}{42} = \frac{7 \pm 23}{42} = \frac{5}{2}$ or $-\frac{4}{3}$. Since the roots are distinct, the solutions $y_1(t) = e^{5t/2}$ and $y_2(t) = e^{-4t/3}$ are LI.														
Since the roots	are distinct, the	solutions $y_1(t) = e^{5t/2}$ and $y_2(t) = e^{-4t/3}$ are LI.												
Since the roots Therefore the g	are distinct, the general solution is	solutions $y_1(t) = e^{5t/2}$ and $y_2(t) = e^{-4t/3}$ are LI. $y(t) = Ae^{5t/2} + Be^{-4t/3}$												
Since the roots Therefore the s	are distinct, the general solution is	solutions $y_1(t) = e^{5t/2}$ and $y_2(t) = e^{-4t/3}$ are LI. $y(t) = Ae^{5t/2} + Be^{-4t/3}$												
Since the roots Therefore the s	are distinct, the general solution is	solutions $y_1(t) = e^{5t/2}$ and $y_2(t) = e^{-4t/3}$ are LI. $y(t) = Ae^{5t/2} + Be^{-4t/3}$												
Since the roots Therefore the s	are distinct, the s general solution is	solutions $y_{1}(t) = e^{5t/2}$ and $y_{2}(t) = e^{-4t/3}$ are LI. $y(t) = Ae^{5t/2} + Be^{-4t/3}$												
Since the roots Therefore the s	are distinct, the s general solution is	solutions $y_{1}(t) = e^{5t/2}$ and $y_{2}(t) = e^{-4t/3}$ are LI. $y(t) = Ae^{5t/2} + Be^{-4t/3}$												
Since the roots Therefore the s	are distinct, the general solution is	solutions $y_{1}(t) = e^{5t/2}$ and $y_{2}(t) = e^{-4t/3}$ are LI. $y(t) = Ae^{5t/2} + Be^{-4t/3}$	· · ·											
Therefore the e	general solution is	solutions $y_{1}(t) = e^{5t/2}$ and $y_{2}(t) = e^{-4t/3}$ are LI. $y(t) = Ae^{-4t/3}$												
Therefore the e	general solution is	$y(t) = Ae^{-4t/3} + Be^{-4t/3}$												
Therefore the s	general solution is	$y(t) = Ae^{3t/2} + Be^{-4t/3}$	• •											
Therefore the e	general solution is	$y(t) = Ae^{3t/2} + Be^{-4t/3}$	· ·											
Therefore the e	general solution is	$y(t) = Ae^{2t/2} + Be^{-4t/3}$	· · ·											
Therefore the e	general solution is	$y(t) = Ae^{3t/2} + Be^{-4t/3}$	· · ·											
Therefore the s	general solution is	$y(t) = Ae^{-4t/3} + Be^{-4t/3}$	· · ·											

WHAT IF THE CHARACTERISTIC EQUATION HAS REPEATED R	ROOTS?
$\lambda_{u} - \beta \lambda_{l} + \lambda = 0$	
Characteristic equation $r^2 - ar + 1 = 0$ $(r-1)^2 = 0$	· · · · · · · · · · · · · · · · · · ·
=> $y_{\pm}(x) = e^{x}$ is a solution. Need another solution NOT of the	e form Ce ^x .
GUESS $y_a(x) = xe^x$.	
$(xe^{x})^{"} - 2(xe^{x})' + xe^{x} \stackrel{?}{=} 0$	
$(xe^{x}+e^{x})^{1}-2(xe^{x}+e^{x})+xe^{x}=0$	
$xe^{x} + 2e^{x} - 2xe^{x} - 2e^{x} + xe^{x} = 0$ works!	
So the general solution is $y(x) = C_1 e^x + C_2 x e^x$.	
Does it always work? Yes! Try it with y"- 2ay + a y = 0.	· · · · · · · · · · · · · · · · · · ·
Characteristic equation: $r^2 - aar + a^2 = 0 \iff (r-a)^2 = 0$.	· · · · · · · · · · · · · · · · · · ·
$\Rightarrow e^{ax}$ is a solution of $y'' - 2ay' + a^{a}y = 0$.	
Try xe^{ax} : $(xe^{ax})^{\mu} - 2a(xe^{ax})^{\mu} + a^{\mu}xe^{ax} \stackrel{?}{=} 0$	
$(0 \cdot e^{ax} + 2 \cdot 1 \cdot a e^{ax} + x \cdot a^{a} e^{ax}) - 2a e^{ax} - 2a^{a}$	$a^2 x e^{ax} + a^2 x e^{ax} \stackrel{?}{=} 0$ V

W	TAH	IF (TH	E	CH	AR	AC	TE	RIS	5TI	C 2	E(30/	ATI	ON	I (14	S.	Ċ	M	PLI	EX	F	200	T	S.	?	•	•	•		•	•	•			•	•	•	•	•	•	•	• •	
•	8"+	4 =(0	•	•	•							•		•	•		•	•		•	•	•	•	•	•	•	•	•	•			•	•				•	•	•	•	•	•		
•	01												٠				•			٠	٠	٠	•			٠	٠	•	٠	•		٠		٠					٠		•	•			
•	Char	r, eg	1 • •	۲ ,۳		-1	•													•						•	•		•			•	•	•				•	•		•	•			
•	Com	ip le>	K 5	olu	tior	nS	· ·	e ^{ix}	0	ind		e	X :	Ĥ	OW	1	b	ge	t]	reo	4-	va	lve	d	50	lut	io	nsi	?	•		•	•	•			•	•	•	•	•	•	•	• •	
•	KEY	08	SE	RV	ATI	ON	S: i	f	a (con	npl	ex	-V0	alue		fu	nc	tior	۰ ۱	sol	ves	5 (0	ha	ome	oge	nec	NS.	li	ineo	(equ	atio	ņ	the	2n .	its	٢	eal	0	ind		•		
	imag	 	rv.	Da	rts		Ico	A		•									٠			•	•			•							٠					•	•		•	•			
•		jina	• 7.	Pu				u	0.				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•	•	•		•	•	•	•	•	•	•	•		
												, ,																					•												
													•							٠	٠	•	•			٠	٠		٠			٠		٠						٠		•			
•	• •				•	•																																			•				
•	• •	• •	٠	•	•	•	• •			•						•	٠	•				•	•	•		•	•		•	٠		•	٠	•				•		•	•	•	•	• •	,
•	• •	• •	٠	•	•	•	• •		• •		•	• •	•		•		•		•	•	•	•		•	•	•	٠	•	•	•		•	•	•	• •	•	•	•	•	•	•	•	•	• •	•
•	• •		•	•	•		• •										•					•	•			•	•		•			•	•				•		•			•	•		
			٠		•																						•					٠													
•	• •		٠				• •		• •																							٠	٠												
	• •		•		•	•																				•	•		•	•			•	•											
•	• •	• •	٠			•	• •		• •	٠			٠	•	•	•	٠	•	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•		٠	٠	•		•	•	•	•	٠	•	•	•		
•	• •	• •	٠	•	•	•					•		۰	•	•		٠		٠	٠	۰	٠	•	•	•	٠	٠	٠	•	•			٠	٠			•	•	•	٠	•	•	•		
•			•	•	•	•							•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•			•	•	•	•	•		•		
		• •		•													•					•	•						•				•												
																				•	٠	•	•			٠			•					•											
•			٠		٠	•							٠	•			•		٠	٠		٠	٠			٠	٠	٠	٠				٠							٠					
												, .																					•												
•	• •	• •	•			•	• •			•			٠			•	•	•	٠	٠	٠	•	•	•	•	٠	٠	٠	*	•		٠	•	٠			•	•	•	٠	•	•	•		