3.1 SECOND-ORDER LINEAR EQUATIONS

DEFINITION: The order of a diff.eq. is the order of the highest derivative in the equation.

DEFINITION: A linear diff. eq. has the form

$$
P_{0}(x) y^{(n)}+P_{2}(x) y^{(n-1)}+\cdots+P_{n}(x) y=F(x)
$$

for some n. It has constant coefficients if $P_{0}(x), P_{2}(x), \ldots, P_{n}(x)$ are constant functions. It is homogeneous if $F(x)=0$ for all x.

EXAMPLES:

$$
\begin{aligned}
& y^{\prime \prime}+x y^{\prime}+3 y=0 \\
& y^{\prime \prime}+x y^{\prime}+3 y=x^{2} \\
& y^{\prime \prime}=y \\
& y y^{\prime}=x^{2}+2 \\
& \sin \left(y^{\prime \prime}\right)-y^{\prime}+5 y=0 \\
& y^{\prime \prime \prime}+3 x^{2} y^{\prime}=7 x
\end{aligned}
$$

and order linear homogeneous
and order linear, not homogeneous
and order linear homogeneous constant coefficients
1st order nonlinear
and order nonlinear
3rd order linear, not homogeneous

PRINCIPLE OF SUPERPOSITION consider a linear homogeneous equation

$$
P_{0}(x) y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=0
$$

If $y_{1}(x)$ and $y_{2}(x)$ solve then $A y_{1}(x)+B y_{2}(x)$ also does, for any constants A and B.

EXAMPLE: $y^{\prime \prime}=-y$

$$
\left.\begin{array}{l}
y_{1}(x)=\sin x \text { is a solution } \\
y_{2}(x)=\cos x \text { is also a solution }
\end{array}\right\} \Rightarrow y(x)=A \sin x+B \cos x \text { is a solution }
$$

Are there more solutions? Does $A \sin x+B \cos x$ include all possible solutions? The answer comes from the Existence and Uniqueness Theorem.

THEOREM (EXISTENCE AND UNIQUENESS): the IVP

$$
P_{0}(x) y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=F(x), y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

has one and only one solution defined for x in the open interval I, provided $P_{0}(x), \ldots, P_{n}(x), F(x)$ are continuous in I and x_{0} belongs to I.
COROLLARY: for a linear equation of order n. the general solution has n parameters.

IND ORDER HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

By the existence and uniqueness theorem, if we can find two solutions $y_{2}(x), y_{2}(x)$ that are NOT multiples of each other then the general solution is $C_{1} y_{1}(x)+C_{2} y_{2}(x)$.

GUESS $y(x)=e^{r x}$ for some r to be determined. Plug into the equation, solve for r

$$
\begin{aligned}
& a\left(e^{r x}\right)^{\prime \prime}+b\left(e^{r x}\right)^{\prime}+c\left(e^{r x}\right)=0 \\
& \left(a r^{2}+b r+c\right) e^{r x}=0
\end{aligned}
$$

$a r^{2}+b r+c=0 \quad$ characteristic equation

If the characteristic equation has two distinct real roots then we have our two solutions.

EXAMPLE: Find the general solution of $2 y^{\prime \prime}-y^{\prime}-y=0$.
The equation is second-order linear homogeneous with constant coefficients.
It's characteristic equation is $2 r^{2}-r-1=0$, whose zeros are $\frac{1 \pm \sqrt{1-4 \times 2 \times(-1)}}{4}=1$ or $-\frac{1}{2}$.
Since the roots are distinct, the solutions $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-t / 2}$ are $L I$.
Therefore the general solution is $y(t)=A e^{t}+B e^{-t / 2}$
EXAMPLE: Find the general solution of $6 y^{\prime \prime}-7 y^{\prime}-20 y=0$.
The equation is second-order linear homogeneous with constant coefficients.
It's characteristic equation is $\quad 6 r^{2}-7 r-20=0$, whose zeros are $\frac{7 \pm \sqrt{49-4 \times 6 \times(-20)}}{-4 t / 3}=\frac{7 \pm 23}{12}=\frac{5}{2}$ or $-\frac{4}{3}$
Since the roots are distinct, the solutions $y_{1}(t)=e^{5 t / 2}$ and $y_{2}(t)=e^{-4 t / 3}$ are $L I$.
Therefore the general solution is $y(t)=A e^{5 t / 2}+B e^{-4 t / 3}$

WHAT IF THE CHARACTERISTIC EQUATION HAS REPEATED ROOTS?

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

Characteristic equation $\begin{aligned} r^{2}-2 r+1 & =0 \\ (r-1)^{2} & =0\end{aligned}$

$$
(r-1)^{2}=0
$$

$\Rightarrow y_{1}(x)=e^{x}$ is a solution. Need another solution NOT of the form $C e^{x}$.
GUESS $\quad y_{2}(x)=x e^{x}$.

$$
\begin{aligned}
& \left(x e^{x}\right)^{\prime \prime}-2\left(x e^{x}\right)^{\prime}+x e^{x} \stackrel{?}{=} 0 \\
& \left(x e^{x}+e^{x}\right)^{\prime}-2\left(x e^{x}+e^{x}\right)+x e^{x}=0 \\
& x e^{x}+2 e^{x}-2 x e^{x}-2 e^{x}+x e^{x}=0 \quad \text { works! }
\end{aligned}
$$

So the general solution is $y(x)=c_{1} e^{x}+c_{2} x e^{x}$.
Does it always work? Yes! Try it with $y^{\prime \prime}-2 a y^{\prime}+a^{2} y=0$.
Characteristic equation: $r^{2}-2 a r+a^{2}=0 \Leftrightarrow(r-a)^{2}=0$.
$\Rightarrow e^{a x}$ is a solution of $y^{\prime \prime}-2 a y^{\prime}+a^{2} y=0$.
Try $x e^{a x}$:

$$
\begin{aligned}
& \left(x e^{a x}\right)^{\prime \prime}-2 a\left(x e^{a x}\right)^{1}+a^{2} x e^{a x} \stackrel{?}{=} 0 \\
& \left(0 \cdot e^{a x}+2 \cdot 1 \cdot a e^{a x}+x \cdot a^{2} e^{a x}\right)-2 a e^{a x}-2 a^{2} x e^{a x}+a^{2} x e^{a x} \stackrel{?}{=} 0
\end{aligned}
$$

WHAT IF THE CHARACTERISTIC EQUATION HAS COMPLEX ROOTS ?

$$
y^{\prime \prime}+y=0
$$

Char. eq. $r^{2}=-1$.
Complex solutions $e^{i x}$ and $e^{-i x}$. How to get real-valued solutions?
KEY OBSERVATION: if a complex-valued function solves a homogeneous linear equation then its real and imaginary parts also do.

