3.2 GENERAL SOLUTIONS OF LINEAR EQUATIONS

DEFINITION: We say that a set $\left\{y_{1}, \ldots, y_{n}\right\}$ of functions is linearly independent (LI) if

$$
C_{1} y_{1}+C_{2} y_{2}+\cdots+C_{n} y_{n}=0 \text { implies } C_{1}=C_{2}=\cdots=C_{n}=0 .
$$

We say that $\left\{y_{1}, \ldots, y_{n}\right\}$ is linearly dependent (LD) if one of the functions can be written as a linear combination of the remaining functions.
THINK: the functions are $L I$ when there is no redundancy in the general solution $C_{1} y_{1}+\cdots+C_{n} y_{n}$
FACT: to solve a linear homogeneous equation of order n,

$$
y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=0
$$

one needs to find n LI solutions y_{1}, \ldots, y_{n} and take linear combinations. In order words, the general solution is $C_{1} y_{1}+\cdots+C_{n} y_{n}$.
\rightarrow with less than n LI solutions, it is impossible to generate all solutions
\rightarrow if the linear eq has order n, it is impossible to find $n+1$ LI solutions.

EXAMPLE: Solve the IVP $y^{(3)}+9 y^{\prime}=0, y(0)=3, y^{\prime}(0)=-1, y^{\prime \prime}(0)=2$
given LI solutions $y_{1}=1, y_{2}=\cos (3 x), y_{3}=\sin (3 x)$.

$$
\text { General solution } \begin{aligned}
y & =A+B \cos (3 x)+C \sin (3 x) \\
y^{\prime} & =-3 B \sin (3 x)+3 C \cos (3 x) \\
y^{\prime \prime} & =-9 B \cos (3 x)-9 C \sin (3 x) \\
\text { From } * \text {, we get } \quad 3 & =A+B \\
-1 & =+3 C \\
2 & =-9 B
\end{aligned}
$$

whence $c=-\frac{1}{3}, B=-\frac{2}{9}, A=\frac{29}{9}$. Going back to *, we find $y=\frac{29}{9}-\frac{2}{9} \cos (3 x)-\frac{1}{3} \sin (3 x)$.

HOW DO WE KNOW iF A GIVEN SET OF FUNCTIONS IS LI?
THEOREM: let $y_{1}, y_{2}, \ldots, y_{n}$ be solutions of the linear homogeneous equation

$$
y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=0 .
$$

Then $\left\{y_{1}, \ldots, y_{n}\right\}$ is LI if and only if the following determinant is $\neq 0$ for some x.

$$
W(x):=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x)
\end{array}\right| .
$$

EXAMPLE: check that $\{1, \cos (3 x), \sin (3 x)\}$ is LI.
Need to check $w(x) \neq 0$ for some x, where

$$
W(x)=\left|\begin{array}{ccc}
1 & \cos (3 x) & \sin (3 x) \\
0 & -3 \sin (3 x) & 3 \cos (3 x) \\
0 & -9 \cos (3 x) & -9 \sin (3 x)
\end{array}\right| \quad W(0)=\left|\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 3 \\
0 & -9 & 0
\end{array}\right|=27 \neq 0 \text { done }
$$

EXAMPLE: check that $\left\{e^{a x}, e^{b x}, e^{c x}\right\}$ is $L I$ if a, b and c are distinct.
Need to check $w(x) \neq 0$ for some x_{1} where

$$
W(x)=\left|\begin{array}{ccc}
e^{a x} & e^{b x} & e^{c x} \\
a e^{a x} & b e^{b x} & c e^{c x} \\
a^{2} e^{a x} & b^{2} e^{b x} & c^{2} e^{c x}
\end{array}\right|
$$

$W(0)=\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|$
This is a Vandermonde determinant (look it up).
Is it $\neq 0$? We can compute the 3×3 determinant by brute force:

$$
\begin{aligned}
w(0) & =b c^{2}-c b^{2}-a c^{2}+c a^{2}+a b^{2}-b a^{2} \\
& =a^{2}(c-b)+b^{2}(a-c)+c^{2}(b-a) \\
& =a^{2}(c-b)+b^{2}(a-b+b-c)+c^{2}(b-a) \\
& =(a-b)(b-c)(b+c)+(b-c)(b-a)(b+a) \\
& =(a-b)(b-c)(c-a)
\end{aligned}
$$

clearly $\neq 0$ if a, b and c are distinct $(\dot{)}$

WHAT ABOUT NON-HOMOGENEOUS LINEAR EQUATIONS?
Consider the linear equation

$$
y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=F(x) . \quad(N H)
$$

Its associated homogeneous equation is, by definition,

$$
\begin{equation*}
y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=0 \tag{H}
\end{equation*}
$$

FACT: the general solution of (NH) has the form

$$
y(x)=y_{p}(x)+C_{1} y_{1}(x)+\cdots+C_{n} y_{n}(x),
$$

where $y_{p}(x)$ can be ANY solution of (NH) (often called a particular solution) and $y_{1}, y_{2}, \ldots, y_{n}$ are LI solutions of (H).

