WHAT ABOUT NON-HOMOGENEOUS LINEAR EQUATIONS?
Consider the linear equation

$$
y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=F(x) . \quad(N H)
$$

Its associated homogeneous equation is, by definition,

$$
\begin{equation*}
y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n}(x) y=0 \tag{H}
\end{equation*}
$$

FACT: the general solution of (NH) has the form

$$
y(x)=y_{p}(x)+C_{1} y_{1}(x)+\cdots+C_{n} y_{n}(x),
$$

where $y_{p}(x)$ can be ANY solution of (NH) (often called a particular solution) and $y_{1}, y_{2}, \ldots, y_{n}$ are LI solutions of (H).

GIVEN A SOLUTION, HOW TO FIND A LI SOLUTION?
One of the methods is called reduction of order. Consider

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \quad \text { (and order linear homogeneous) }
$$

Let y_{1} be a solution. How to find an independent solution y_{2} ?
GUESS: $y_{2}(x)=v(x) y_{1}(x)$ for some $v(x)$ to be determined. Plug y_{2} into the equation and try to solve for $v(x)$.

$$
\begin{aligned}
& \left(v y_{1}^{\prime \prime}+p(x)\left(v y_{1}\right)^{\prime}+q(x) v y_{1}=0\right. \\
& \left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+p(x)\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+q(x) v y_{1}=0 \\
& v(\underbrace{\left.y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}\right)+y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) v^{\prime}=0}_{=0} \begin{array}{l}
\text { is a solute } y_{1}
\end{array}
\end{aligned}
$$

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) v^{\prime}=0 \quad \text { separable equation for } v^{\prime}
$$

EXAMPLE (CONSTANT COEFFICIENTS) Find two LI solutions to $y^{\prime \prime}-2 a y^{\prime}+a^{2} y=0$
We know that $y_{1}=e^{a x}$ and $y_{2}=x e^{a x}$ work, and we know that y_{1} can be found via the characteristic equation. Plug $v(x) e^{a x}$ and try to solve for $v(x)$.

$$
\begin{aligned}
& \left.\left(v^{\prime \prime} e^{a x}+2 a v i e^{a x}+a^{2} v e^{2 x}\right)-2 a(v) e^{a x}+a v e^{a x}\right)+a^{2} v e^{a x}=0 \\
& v^{\prime \prime}=0 \Rightarrow v(x)=A x+B
\end{aligned}
$$

EXAMPLE: Find the general solution of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, given that $y_{2}(x)=x$ is a solution.
Check that $y_{1}(x)=x$ is a solution: $x^{2} \cdot 0+x \cdot 1-x=0$
Guess a solution $x v(x)$, plug into the equation and try to solve for v.

$$
\begin{gathered}
x^{2}\left(2 v^{\prime}+x v^{\prime \prime}\right)+x\left(w+x v^{\prime}\right)-x v^{\prime}=0 \\
x^{3} v^{\prime \prime}=-3 x^{2} v^{\prime} \\
v^{\prime \prime}=\frac{-3}{x} \\
v^{\prime} \\
\ln v^{\prime}=-3 \ln x+C \\
v^{\prime}=e^{c} x^{-3} \\
v=\frac{e^{c} x^{-2}}{-2}+D
\end{gathered}
$$

Choosing $C=D=0$, we get the solution $-\frac{1}{2 x}$. Check: $x^{2}\left(\frac{-1}{2 x}\right)^{\prime \prime}+x\left(\frac{-1}{2 x}\right)^{\prime}-\left(-\frac{1}{2 x}\right)^{?}=0$

$$
x^{2}\left(-x^{-3}\right)+\frac{1}{2} x^{-1}+\frac{1}{2 x} \cong 0
$$

ANSWER: $y=A x+\frac{B}{x}$.

EXAMPLE: Consider the linear homogeneous equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Given that $y_{1}(x)=x$ is a solution, find a linearly independent solution.
Guess $y_{2}(x)=x v(x)$ for a $v(x)$ that has to be determined.

$$
\begin{aligned}
& \left(1-x^{2}\right)(x v)^{\prime \prime}-2 x(x v)^{\prime}+2 x v=0 \\
& \left(1-x^{2}\right)\left(2 v^{\prime}+x v^{\prime \prime}\right)-2 x\left(v+x v^{\prime}\right)+2 x v=0 \\
& \left(1-x^{2}\right) x v^{\prime \prime}=v^{\prime}\left(2 x^{2}-2\left(1-x^{2}\right)\right) \\
& \frac{v^{\prime \prime}}{v^{\prime}}=\frac{2 x}{1-x^{2}}-\frac{2}{x} \\
& \ln v^{\prime}=-\ln \left(1-x^{2}\right)-2 \ln x+c \\
& v^{\prime}=\frac{e^{c}}{\left(1-x^{2}\right) x^{2}}=e^{c}\left(\frac{1}{x^{2}}+\frac{1}{1-x^{2}}\right)=e^{c}\left(\frac{1}{x^{2}}+\frac{1}{2(1+x)}+\frac{1}{2(1-x)}\right) \\
& v=e^{c}\left(-x^{-1}+\frac{1}{2} \ln \frac{1+x}{1-x}\right)
\end{aligned}
$$

To find a solution of that is independent of x, choose a value of C and multiply c by x. For example, $y_{2}=-1+\frac{x}{2} \ln \frac{1+x}{1-x}$.
3.3 HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

SUMMARY: Consider $\quad y^{\prime \prime \prime \prime}+c_{1} y^{\prime \prime \prime}+c_{2} y^{\prime \prime}+c_{3} y^{\prime}+c_{4} y=0$
It's characteristic equation is $r_{p(r)}^{r^{4}+c_{1} r^{3}+c_{2} r^{2}+c_{3} r}+c_{4}=0$
The solution of depends on the factorization of $p(r)$.
$\frac{p(r)}{(r-a)(r-b)(r-c)(r-d)}$
$(r-a)^{2}(r-b)(r-c)$
$(r-a)^{3}(r-b)$
$(r-a)(r-b)(r-(c+i d))(r-(c-i d))$
$(r-a)^{2}(r-(c+i d))(r-(c-i d))$
$(r-(a+i b))(r-(a-i b))(r-(c+i d))(r-(c-i d))$
$\left(r-(a+i b)^{2}(r-(a-i b))^{2}\right.$
$(r-(a+i b))(r-(a-i b))(r-c)^{2}$
solution

$$
\begin{aligned}
& A e^{a x}+B e^{b x}+C e^{c x}+D e^{d x} \\
& A e^{a x}+B x e^{a x}+C e^{b x}+D e^{c x} \\
& \left(A+B x+C x^{2}\right) e^{a x}+D e^{b x} \\
& A e^{a x}+B e^{b x}+C e^{c x} \cos (d x)+D e^{c x} \sin (d x) \\
& (A+B x) e^{a x}+e^{c x}(C \cdot \cos (d x)+D \sin (d x)) \\
& e^{a x}(A \cos (b x)+B \sin (b x))+e^{c x}(C \cdot \cos (d x)+D \cdot \sin (d x)) \\
& (A+B x) e^{a x}(C \cos (b x)+D \sin (b x)) \\
& (A \cos (b x)+B \sin (b x)) e^{a x}+(C+D x) e^{c x}
\end{aligned}
$$

EXAMPLE: $4 y^{\prime \prime}+4 y^{\prime}+2 y=0$
Characteristic equation: $4 r^{2}+4 r+2=0$
Roots: $r=\frac{-4 \pm \sqrt{16-4 \times 4 \times 2}}{8}=\frac{-4 \pm \sqrt{-16}}{8}=\frac{-1 \pm i}{2}$
\Rightarrow there are two LI solutions $y_{1}=e^{-\frac{1+i}{2} x}$ and $y_{2}=e^{\frac{-1-i}{2} x}$, but they take complex values.
How do we get a real-valued solution for them?
FACT: BECAUSE THE EQUATION IS LINEAR AND ITS COEFFICIENTS ARE REAL NUMBERS, the real and imaginary parts of y_{1} and y_{2} are solutions.

$$
y_{1}(x)=e^{-x / 2} e^{i x / 2}=e^{-x / 2}\left(\cos \left(\frac{x}{2}\right)+i \sin \left(\frac{x}{2}\right)\right)
$$

$\Rightarrow e^{-x / 2} \cos \frac{x}{2}$ and $e^{-x / 2} \sin \frac{x}{2}$ are solutions to $4 y^{\prime \prime}+4 y^{\prime}+2=0$.

EXAMPLE: $y^{\prime \prime}-2 y^{\prime}+5 y=0$
Characteristic equation: $r^{2}-2 r+5=0$
Roots: $r=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 i$
General solution: $y=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)$.

