3.4 MECHANICAL VIBRATIONS

Consider a block of mass m attached to a spring and to a dashpot. When displaced from equilibrium a distance d, restorative force of magnitude Kd .
When the block moves at speed v, the dashpot opposes the motion with a force of magnitude $c v$.

The displacement $x(t)$ at time t satisfies

$$
m x^{\prime \prime}(t)+c x^{\prime}(t)+k x(t)=0
$$

(and order, linear, homogeneous with constant coefficients) GOAL FOR TODAY: classify the possible behaviors of the block and compute some quantities of the motion (period and amplitude of the oscillations).

FIRST CASE: UNDAMPED MOTION ($C=0$)

$$
m x^{\prime \prime}(t)+k x(t)=0
$$

Characteristic equation $m r^{2}+k r=0$
Roots $r= \pm \sqrt{\frac{k}{m}} i$.
\Rightarrow General solution $x(t)=A \cos \left(\sqrt{\frac{k}{m}} t\right)+B \sin \left(\sqrt{\frac{R}{m}} t\right)$.
Let $\omega_{0}:=\sqrt{\frac{k}{m}}$ and call it the frequency. Looking at the graph of some solutions and keeping in mind that the equation models the block on a spring, we may conjecture the following PROPOSITION: For any A, B and ω_{0}, there are numbers $C>0$ and α such that

$$
A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)=C \cdot \cos \left(\omega_{0} t-\alpha\right)
$$

In fact. $C^{2}=A^{2}+B^{2}$ and $\tan \alpha=A / B$.

PROOF:

$$
\begin{aligned}
& C \cdot \cos \left(\omega_{0} t-\alpha\right)=C \cdot \cos \left(\omega_{0} t\right) \cos \alpha+C \cdot \sin \left(\omega_{0} t\right) \sin \alpha \\
&=A \cos \left(\omega_{0} t\right)+B \cdot \sin \left(\omega_{0} t\right) \\
& \Rightarrow A^{2}+B^{2}=(C \cdot \cos \alpha)^{2}+(C \cdot \sin \alpha)^{2}=C^{2} \text { and } \cos \alpha=A / C .
\end{aligned}
$$

PROBLEM: expresS C and α in terms of $x(0)$ and $x^{\prime}(0)$.

$$
\begin{align*}
& x(t)=c \cdot \cos \left(\omega_{0} t-\alpha\right) \Rightarrow x(0)=C \cdot \cos (-\alpha)=C \cdot \cos \alpha \tag{I}\\
& x^{\prime}(t)=-\omega_{0} C \cdot \sin \left(\omega_{0} t-\alpha\right) \Rightarrow x^{\prime}(0)=-\omega_{0} c \cdot \sin (-\alpha)=\omega_{0} C \cdot \sin \alpha
\end{align*}
$$

Dividing (II) by (I), we get $\quad \frac{x(0)}{x^{\prime}(0)}=\omega_{0} \cdot \tan \alpha \Rightarrow \alpha=\operatorname{atan}\left(\frac{x(0)}{\omega_{0} x^{\prime}(0)}\right)$
Besides, $\quad \omega_{0}^{2} x(0)^{2}+x^{1}(0)^{2}=\omega_{0}^{2} C^{2} \Rightarrow C=\sqrt{x(0)^{2}+\frac{x^{\prime}(0)^{2}}{\omega_{0}^{2}}}$
REMARK: the period ω_{0} does not depend on the initial condition!

SECOND CASE: DAMPED MOTION $(C>0)$

$$
m x^{\prime \prime}(t)+c x^{\prime}(t)+k x(t)=0
$$

Characteristic equation: $m r^{2}+c r+k=0$
Roots: $r=\frac{-c \pm \sqrt{c^{2}-4 m k}}{2 m}$
3 possibilites depending on the sign of $c^{2}-4 m k$.
1st possibility: or erdamped $\left(c^{2}>4 m k\right)$
$x(t)=A e^{r_{1} t}+B e^{r_{2} t}$, where r_{1} and r_{2} are the roots of the characteristic equation.
and possibility: critically damped ($c^{2}=4 m k$)

$$
\begin{aligned}
& \text { Double root } \frac{-c}{2 m}=-p \\
& x(t)=(A+B t) e^{-p t}
\end{aligned}
$$

Ord possibility: underdamped ($c^{2}<4 m k$)
Roots $-\frac{c}{2 m} \pm \sqrt{\frac{c^{2}}{4 m^{2}}-\frac{k}{m}}=-p \pm i \sqrt{\omega_{0}^{2}-p^{2}}$
Let $\omega_{1}:=\sqrt{\omega_{0}^{2}-P^{2}}$ and call it circular frequency.
$x(t)=e^{-p t}\left(A \cos \omega_{1} t+B \sin \omega_{s} t\right)$
Then $T_{1}=\frac{2 \pi}{\omega_{1}}$ is called pseudo-period.

$$
=c \cdot e^{-p t} \cos \left(\omega_{1} t-\alpha\right)
$$

EXAMPLE: Consider a block of mass m that is attached to a spring suspended vertically. It stretches the spring a distance so Let K be the spring constant and c be the friction constant (assume friction proportional to velocity). Find an equation for the motion of the block.

Let $y(t)$ be the distance from static equilibrium, increasing downwards. At static equilibrium, $m g=k s_{0}$, so $k=\frac{m g}{s_{0}}$.

In general,

$$
\begin{aligned}
& m y^{\prime \prime}(t)=m g-k\left(y(t)+s_{0}\right)-c y^{\prime}(t) \\
& \Rightarrow m y^{\prime \prime}+c y^{\prime}+k y=0
\end{aligned}
$$

The exact same equation as for the horizontal spring.

