5.2 THE EIGENVALUE METHOD FOR LINEAR SYSTEMS						• •	• •	
GOAL develop a method for solving ANY system of the form			•••	• •		••••	• •	
(I) $\begin{cases} X_{\pm}^{i} = a \times_{\pm} + b \times_{2} \\ X_{a}^{i} = c \times_{\pm} + d \times_{2} \end{cases} \qquad $	· · · ·	· · · ·	· ·	· ·	· · · ·	· ·	· ·	
WE KNOW How to solve any system with $\alpha = 0$.	· · ·	· · ·	· ·	• •	· · ·	· ·	· ·	•
$(II) \begin{cases} x_{1}' = x_{2} \\ x_{2}' = c x_{1} + d x_{2} \end{cases} \qquad x_{1}'' - d x_{1}' - c x_{1} = 0$	· · ·	· · ·	· · ·	• •	· · ·	· ·	· · ·	
ALSO KNOW how to solve any system with b=C=0:	· · ·	· · ·	••••	 	· · ·	· ·	· ·	
$(III) \begin{cases} x_1' = \alpha X_1 \\ x_2' = d X_2 \end{cases} \implies X_1(t) = A e^{\alpha t}, X_2(t) = B e^{d t} \end{cases}$	· · ·	· · ·	· ·		· · ·	· ·	· ·	-
$\Rightarrow \begin{bmatrix} X_{1}(t) \\ X_{2}(t) \end{bmatrix} = A \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{at} + B \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{bt}$	· · ·	· · ·	••••	• •	· · ·	· ·	· ·	
IDEA find a change of variables that turns (I) into (III) .	· · ·	· · ·	· · ·	· ·	· · ·	· ·	· ·	•
The matrix in (III) is diagonal, so the change of variables we			•				i5	
related with diagonalization of matrices.								
						• •		
					• • •			•

EIGENVALUES AND EIGENVECTORS
DEFINITION Let P be a square nxn matrix. We say that the vector v (an nx1 matrix) is an
eigenvector of P if
i)
ii) $P = \lambda \forall$ for some number λ , that is called the eigenvalue associated to λ .
EXAMPLES $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ Figure less 4 and 4 aigenvectors $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$
EXAMPLES $\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$ Eigenvalues 1 and 4, eigenvectors $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
$\begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix}$ Eigenvalues $3 \pm 4i$, eigenvectors $\begin{bmatrix} 1 \\ \pm i \end{bmatrix}$.
·····································
[1, 1, 1]
$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Eigenvalues 3,0,0. eigenvectors $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.
· · · · · · · · · · · · · · · · · · ·

HOW TO SOLVE * = P* KNOWING THE EIGENVECTORS AND EIGENVALUES OF P.		•			
EXAMPLE $X' = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} X$	• •	•	• •	• •	• •
Need two LI solutions.	· ·	•	· ·		• •
We know $\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 & 2 \end{bmatrix} e^{t} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{t} = \left(\begin{bmatrix} -1 \\ 2 \end{bmatrix} e^{t} \right)^{1}$	· ·	•	· ·	· ·	· ·
so $x_1(t) = \begin{bmatrix} -1 \\ 2 \end{bmatrix} e^t$ is a solution of $x' = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} x$.	· ·	•	· ·		• •
Also Know $\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$	· ·	•	· ·	 	· ·
so $x_2(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$ is also a solution of $x' = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} x$.	· ·	•	· · ·	· ·	
It's easy to see that $x_1(t)$ and x_2 are LI, but we can verify if the Wronsk practice:	lian	i5	≠ 0	for	· ·
$\begin{array}{c} 2 \\ 0 \\ \neq \end{array} \begin{vmatrix} -1 & 1 \\ 2 & 1 \end{vmatrix} = -1.$	· ·	•	· ·	 	· ·
So the general solution of $X' = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} X$ is $[X(t) = Ae^{t} \begin{bmatrix} -1 \\ 2 \end{bmatrix} + Be^{4t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.	· ·	•	· ·	· ·	· ·
	• •		• •	• •	• •

EXAMPLE $X' = \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix} X$	· · · · · · · · · · · · · · · · · · ·
Need two LI solutions.	
Know: $\begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = (3+4i) \begin{bmatrix} 1 \\ i \end{bmatrix}$	· · · · · · · · · · · · · · · · · · ·
This gives a complex solution Z (t)	$= e^{\pm (3+4i)} \begin{bmatrix} 4 \\ i \end{bmatrix} = e^{3t} (\cos 4t + i \sin 4t) \begin{bmatrix} 4 \\ i \end{bmatrix}$
(separate terms with i from	the others) = $e^{3t} \left[\frac{\cos 4t}{-\sin 4t} \right] + i e^{3t} \left[\frac{\sin 4t}{\cos 4t} \right]$
	$=: \times_{1}(t) + i \times_{2}(t).$
Notice that x_1 and x_2 are solutions of	the equation $x' = \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix} x$ (you can check this directly or
use the linearity of the matrix product).	
They are also LI. That's clear because	they are not constant multiples of each other, but we can
also compute the Wronskian for practice	2:
$\begin{array}{c c} ? \\ 0 \neq \\ -\sin 4t \\ -\sin 4t \\ \cos 4t \end{array} = \cos^2 4t + \sin^2 4t$; = 1 .
So the general solution is $X(t) = Ae^{3t}$	$\begin{bmatrix} \cos 4t \\ -\sin 4t \end{bmatrix} + Be^{3t} \begin{bmatrix} \sin 4t \\ \cos 4t \end{bmatrix}$

	OF VARIABLES? Tables in these two examples, but the substitution was there. $\begin{bmatrix} 3 & 1 \\ 2 & a \end{bmatrix} x$, the eigenvectors $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ give $\begin{bmatrix} 2 \\ 2 \end{bmatrix} x$	· · ·
$ \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} $		· ·
	$\begin{array}{l} \text{hen} & \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$ $\begin{array}{l} \text{is invertible, we get} & \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$	· · ·
	ge of variables x1 = -y1 + y2, x2 = 2y1 + y2 transforms	· · · · · · · · · · · · · · · · · · ·
In other words, the chan	ge of variables x1 = -y1 + y2, x2 = 2y1 + y2 transforms	· · · · · · · · · · · · · · · · · · ·
In other words, the chan	ge of variables x1 = -y1 + y2, x2 = 2y1 + y2 transforms	· · · · · · · · · · · · · · · · · · ·
In other words, the channel $\begin{cases} x_1' = 3x_1 + x_2 \\ x_2' = 2x_1 + 2x_2 \end{cases}$ into	ge of variables x1 = -y1 + y2, x2 = 2y1 + y2 transforms	· · · · · · · · · · · · · · · · · · ·
In other words, the channel $\begin{cases} x_1' = 3x_1 + x_2 \\ x_2' = 2x_1 + 2x_2 \end{cases}$ into	ge of variables $x_1 = -y_1 + y_2$, $x_2 = ay_1 + y_2$ transforms $\begin{cases} y_1' = y_1 \\ y_2' = 4y_2 \end{cases}$	• •
In other words, the chance $\begin{cases} x_1' = 3x_1 + x_2 \\ x_2' = 2x_1 + 2x_2 \end{cases}$ into	ge of variables $x_1 = -y_1 + y_2$, $x_2 = ay_1 + y_2$ transforms $\begin{cases} y_1' = y_1 \\ y_2' = 4y_2. \end{cases}$	• •
In other words, the chance $\begin{cases} x_1' = 3x_1 + x_2 \\ x_2' = 2x_1 + 2x_2 \end{cases}$ into	ge of variables $x_1 = -y_1 + y_2$, $x_2 = ay_1 + y_2$ transforms $\begin{cases} y_1' = y_1 \\ y_2' = 4y_2 \end{cases}$	• •
In other words, the chance $\begin{cases} x_1' = 3x_1 + x_2 \\ x_2' = 2x_1 + 2x_2 \end{cases}$ into	ge of variables $x_1 = -y_1 + y_2$, $x_2 = ay_1 + y_2$ transforms $\begin{cases} y_1' = y_1 \\ y_2' = 4y_2 \\ z = 4y_2 \end{cases}$	· ·
In other words, the chance $\begin{cases} x_1' = 3x_1 + x_2 \\ x_2' = 2x_1 + 2x_2 \end{cases}$ into	ge of variables $x_1 = -y_1 + y_2$, $x_2 = 2y_1 + y_2$ transforms $\begin{cases} y_1' = y_1 \\ y_2' = 4y_2. \end{cases}$	· · ·