
Functions Of A Complex Variable I
Instructor: Professor Gregery Buzzard

Course Number: MA 53000
Credits: Three

Time: 8:30–9:20 AM MWF

Catalog Description

Complex numbers and complex-valued functions of one complex variable; differentia-
tion and contour integration; Cauchy’s theorem; Taylor and Laurent series; residues;
conformal mapping; special topics. More mathematically rigorous than MA 52500.

Elements Of Stochastic Processes
Instructor: Professor Christopher Janjigian

Course Number: MA 53200
Credits: Three

Time: 9:30–10:20 AM MWF

Catalog Description

A basic course in stochastic models, including discrete and continuous time Markov
chains and Brownian motion, as well as an introduction to topics such as Gaussian
processes, queues, epidemic models, branching processes, renewal processes, replace-
ment, and reliability problems.

Probability Theory I
Instructor: Professor Samy Tindel

Course Number: MA 53800
Credits: Three

Time: 4:30–5:45 PM TTh

Description
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This is a basic course on stochastic models. We will first review different modes of
convergence for random variables. Then we will explore some widely used classes
of stochastic processes: martingales, renewal processes, stationary processes and
queues. This will be done following:

Textbook: Grimmett, Stirzacker: Probability and Random Processes. Oxford Uni-
versity Press, 2020.

Ordinary Differential Equations And Dynamical Systems
Instructor: Professor Nung Kwan Yip

Course Number: MA 54300
Credits: Three

Time: 12:00–1:15 PM TTh

Catalog Description

This course focuses on the theory of ordinary differential equations and methods of
proof for developing this theory. Topics include basic results for linear systems, the
local theory for nonlinear systems (existence and uniqueness, dependence on param-
eters, flows and linearization, stable manifold theorem) and the global theory for
nonlinear systems (global existence, limit sets and periodic orbits, Poincare maps).
Permission of instructor required.

Real Analysis And Measure Theory
Instructor: Professor Antônio Sá Barreto

Course Number: MA 54400
Credits: Three

Time: 11:30 AM–12:20 PM MWF

Description

This is a qualifying exam course and I will follow the qualifying exam syllabus (which
can be found on the grad student handbook) very closely.
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Part A: A Short review of topics in undergraduate level analysis and a bit more:

1.1 The topology of Rn Convergence of sequences, dense sets. Metric spaces.
2.2 Continuity, uniform continuity and semi-continuity
3.3 Sequences of functions, pointwise and uniform convergence
4.4 The Riemann integral, sets of content zero and sets of measure measure

zero. Cantor sets.
5.5 When is limn→∞

∫ b

a
fn dx =

∫ b

a
limn→∞ fn dx for the Riemann integral?

Part B: Abstract Measures

B.1 Abstract measure spaces and integral properties of measurable func-
tions

B.2 Notions of convergences. Convergence in measure, almost everywhere
convergence, etc.

B.3 Convergence theorems, Fatou’s Lemma
B.4 Lp- spaces, Hölder and Cauchy-Schwatz inequalities. Banach and Hilbert

spaces.
B.5 The Fubini-Tonelli Theorem

Part C: The Lebesgue Measure in Rn

C .1 The construction of the Lebesgue measure and integral in Rn

C .2 When is limn→∞
∫
fn dx =

∫
limn→∞ fn dx for the Lebesgue integral?

C .3 The Fubini-Tonelli Theorem revisited
C .4 Applications: Convolutions and approximations of the identity;
C .5 The Fourier transform and its inverse. The Fourier transform of L2

functions

Part D: Differentiation of functions

D.1 The Vitali Covering Theorem
D.2 Functions of bounded variation, differentiation of monotone functions,

absolute continuity, the Helly Selection Theorem
D.3 The Lebesgue Differentiation Theorem
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References:

E.1 I will type my own course notes (for which I claim no originality) which will be
posted in Brightspace.

E.2 I will also post my handwritten lecture notes in Brightspace.

E.3 There will be no textbook. References: A. Torchinsky, Real Variables and W.
Rudin, Real and Complex Analysis

Grade:

1. One set of homework problems per week. Average of the homework scores=
150 points. No scores will be dropped. Students are highly encouraged to work
together on homework assignments.

2. Two evening midterm exams (two hours long) –100 points each. Students will not
be allowed to collaborate with each other or consult notes or books during the
exams

3. Final exam– 150 points

4. Total: 500 points.

5. Grade curve (which can be adjusted at the end of the semester. I may lower the
cut-offs, but I will not raise them):
A range: 425-449, A minus – 450- 474, A – 475-500, A plus
B range: 350- 374, B minus– 375- 399, B – 400- 424, B plus
C range: 275– 299, C minus – 300 - 259, C – 325- 349, C plus
D range: 250- 274.
F range: < 250
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Introduction To Functional Analysis
Instructor: Professor Kiril Datchev

Course Number: MA 54600
Credits: Three

Time: 12:30–1:20 PM MWF

Catalog Description

Fundamentals of functional analysis. Banach spaces, Hahn-Banach theorem. Prin-
ciple of uniform boundedness. Closed graph and open mapping theorems. Applica-
tions. Hilbert spaces. Orthonormal sets. Spectral theorem for Hermitian operators
and compact operators.

Introduction To Abstract Algebra
Instructor: Professor Saugata Basu

Course Number: MA 55300
Credits: Three

Time: 10:30–11:20 AM MWF

Catalog Description

Group theory: Sylow theorems, Jordan-Holder theorem, solvable groups. Ring the-
ory: unique factorization in polynomial rings and principal ideal domains. Field
theory: ruler and compass constructions, roots of unity, finite fields, Galois theory,
solvability of equations by radicals.

Linear Algebra I
Instructor: Professor Bernd Ulrich

Course Number: MA 55400
Credits: Three

Time: 1:30–2:20 PM MWF

Catalog Description
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Review of basics: vector spaces, dimension, linear maps, matrices determinants,
linear equations. Bilinear forms; inner product spaces; spectral theory; eigenvalues.
Modules over a principal ideal domain; finitely generated abelian groups; Jordan and
rational canonical forms for a linear transformation.

Abstract Algebra II
Instructor: Professor Tong Liu

Course Number: MA 55800
Credits: Three

Time: 10:30–11:20 AM MWF

Catalog Description

This course is a continuation of MATH 557. The course will cover topics in (ho-
mological) dimension theory, regular sequences, Tor and Ext, Koszul complex, local
cohomology, Cohen-Macaulay rings, and Gorenstein rings. The course should be ac-
cessible to anyone who has done MATH 557 or has a working knowledge of the text
in Atiyah–McDonald. No particular book will be followed, but we will mainly use the
following references: Commutative ring theory by Matsumura, An introduction to
homological algebra by Weibel, https://dept.math.lsa.umich.edu/~hochster/
cmrvw.pdf

The Course grade is determined by homework and attendance.

Introduction In Algebraic Topology
Instructor: Professor David Ben McReynolds

Course Number: MA 57200
Credits: Three

Time: 12:00–1:15 PM TTh

Catalog Description

Singular homology theory; Eilenberg-Steenrod axioms; simplicial and cell complexes;
elementary homotopy theory; Lefschetz fixed point theorem.
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Algebraic Number Theory
Instructor: Professor Baiying Liu

Course Number: MA 58400
Credits: Three

Time: 9:30–10:20 AM MWF

Catalog Description

Dedekind domains, norm, discriminant, different, finiteness of class number, Dirichlet
unit theorem, quadratic and cyclotomic extensions, quadratic reciprocity, decompo-
sition and inertia groups, completions and local fields.

Introduction to Stochastic Calculus
Instructor: Professor Christopher Janjigian

Course Number: MA 59500BM
Credits: Three

Time: 12:30–1:20 PM MWF

Description

An introductory course on Brownian motion and Brownian stochastic calculus. Top-
ics will include basic properties of Gaussian random variables, basic path properties
of Brownian motion, basic properties of martingales, basic properties of Ito stochastic
integrals and stochastic differential equations, the (strong) Markov property, connec-
tions to partial differential equations including the Kolmogorov and Fokker-Planck
equations, and the Cameron-Martin and Girsanov theorems. Further topics may
include some applications to mathematical finance, stochastic control, or stochastic
filtering.

Textbook:
A First Course in Stochastic Calculus by Arguin. ISBN: 978-1-4704-6488-2

Prerequisites: (Required)
Basic probability at the level of MATH/STAT 416 or 519
Ordinary differential equations at the level of MATH 266
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(Recommended):
Some exposure to stochastic processes at the level of 432/532.

Filtering Complex Fluid Systems
Instructor: Professor Di Qi

Course Number: MA 59500FC
Credits: Three

Time: 11:30 AM–12:00 PM MWF

Description

Filtering (also known as data assimilation) offers an innovative tool for finding the
optimal probability distribution (the posterior) of the unobserved states and model
parameters by combining dynamical model forecast (the prior) with certain partially
observed data with noises. This advanced topic course will discuss filtering noisy
turbulent signals for complex dynamical systems through an applied mathematics
perspective involving the blending of rigorous mathematical theories, qualitative and
quantitative modeling, and novel numerical procedures. The course will begin with
an elementary introduction to these topics including classical analysis for SDEs and
PDEs and their computational approximations, followed by data assimilation meth-
ods including Kalman filtering, ensemble Kalman filters, and instructive stochastic
qualitative models from turbulence theory and concrete models such as from climate
atmosphere ocean science. Recent development in new mathematical theories and
algorithms for fully nonlinear dynamical systems will also be discussed.

Infinite Dimensional Lie Algebras and Applications
Instructor: Professor Oleksandr Tsymbaliuk

Course Number: MA 59500IDL
Credits: Three

Time: 12:00–1:15 PM TTh

Description
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This course is a detailed introduction into the structure and representation theory of
some of the most important infinite dimensional Lie algebras: Heisenberg algebras,
Kac-Moody algebras, and Virasoro algebra. The course is expected to fit a wide
range of students: graduate and strong undergraduate mathematics students, as
well as graduate physics students.

Tentative list of topics:

• Heisenberg algebra, Virasoro algebra, and affine ĝ as universal central exten-
sions

• Representations of the Heisenberg algebra, the Virasoro algebra, and affine ŝln
via Lie algebras gl∞, a∞, and application to integrable systems

• Boson-fermion correspondence: vertex operator construction and Schur poly-
nomials

• Feigin-Fuchs-Kac determinant formula for Virasoro and the region of unitarity

• The Sugawara construction and the Goddard-Kent-Olive construction

• Structure and representation theory of Kac-Moody algebras

• The Weyl-Kac character formula and the Kac-Macdonald identities

• Shapovalov-Jantzen-Kac-Kazhdan determinant formula for Kac-Moody alge-
bras

Prerequisites: Basic notions from algebra (especially linear algebra). Familiarity
with basic results on finite-dimensional Lie algebras is welcomed but not mandatory.

Introduction to Number Theory
Instructor: Professor Trevor D. Wooley

Course Number: MA 59500INT
Credits: Three

Time: 4:30–5:45 PM TTh

9



Description

Prerequisites: This course is intended for third- or fourth-year undergraduate stu-
dents or beginning graduate students who have taken and obtained a grade of B- or
better in MA 35301 (Linear Algebra II). Students should have basic competence in
mathematical proof.

Number Theory studies the properties of integers, and includes the theory of prime
numbers, the arithmetic structures that underlie cryptosystems such as RSA, Dio-
phantine equations (polynomial equations to be solved in integers, including the topic
of Fermat’s Last Theorem), and rational approximations that distinguish algebraic
and transcendental numbers. Although a topic studied for more than two millenia,
it is the subject of intense active current research, and connects with many other
areas of Mathematics.

This course serves as an introductory exploration of Number Theory, without an
abstract algebra prerequisite, so that final year students without a pure mathematics
background will find this accessible. Connections with abstract algebra will, however,
be noted for interested students, and the material should provide reinforcement and
preparation for abstract algebra for those with ambitions in this direction.

Content: We begin with a reasonably brisk discussion of the basic notions: the Eu-
clidean algorithm, primes and unique factorisation, congruences, Chinese Remainder
Theorem (Public Key Cryptosystems), primitive roots, quadratic reciprocity, arith-
metic and multiplicative functions. The second part of the course is devoted to
topics: binary quadratic forms, Diophantine approximation and transcendence, con-
tinued fractions, Pell’s equation and other Diophantine equations, and quadratic
fields (subject to time constraints).

Companion Text: An Introduction to the Theory of Numbers (Niven, Zuckerman
and Montgomery, 5th edition, Wiley, 1991.)

The course will be based on the instructor’s comprehensive web-page hosted LaTeXed
notes.

Assessment: Course credit will be based on weekly homeworks – the top 10 scores
are totalled; two mid-terms and final exam.
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Topics in Model Theory
Instructor: Professor Margaret Thomas

Course Number: MA 59500MT
Credits: Three

Time: 10:30–11:20 AM MWF

Description

This course serves as an introduction to model theory (a branch of mathematical
logic), which is the study of mathematical structures in terms of their logical proper-
ties. Some of the central questions that one can investigate from this perspective in-
clude the following. Given a mathematical structure, such as the real or complex field
(often enriched with additional operations), one can analyse its class of definable sets
(that is, the sets that can be defined in that structure using particular kinds of logi-
cal expressions). In particular, one can study the algebraic/geometric/combinatorial
nature of these definable sets in terms of the logical complexity of their defining
expressions, or seek to understand whether or not certain interesting sets/functions
can be realised as definable sets therein. Alternatively, one can study the class of
all structures in which certain logical expressions are true, considering, for example,
how many such structures there can be of any given size, up to isomorphism. By
bringing a foundational perspective to core mathematical ideas, model theory can
be (and has been!) applied to many other areas of mathematics (including alge-
bra, combinatorics, algebraic geometry, number theory, operator theory, dynamical
systems, ...) and beyond.

The goal of this course is to cover a variety of central concepts in model theory, in
particular motivated by various areas of application. Such concepts could include
elementary extensions, ultraproducts, complete theories, categoricity, model com-
pleteness, quantifier elimination, elimination of imaginaries, types, saturated and
homogeneous models, indiscernibles and stability. The aim will also be to discuss
some of the key examples of model-theoretic structures and their properties, which
could include algebraically closed fields (and more generally strongly minimal and
stable theories) and real closed fields (and more generally o-minimal and NIP the-
ories), with a view to modern applications of model theory (including applications
of o-minimal structures to diophantine geometry, Hodge theory, and dynamical sys-
tems; and the role of NIP and related tame structures in combinatorics).

Prerequisites: Key background from a first course in logic (such as MA 58500) will
be assumed (including, but not necessarily limited to, first-order formulae, structures
and definable sets; the completeness theorem and compactness theorem of first-order
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logic; and some set theory background such as infinite cardinalities). An awareness
of certain concepts from abstract algebra will also be helpful as these will be used to
illustrate certain key ideas.

Computational Optimal Transport and Deep Generative Models
Instructor: Professors Rongjie Lai

Course Number: MA 59500OT
Credits: Three

Time: 10:30–11:20 AM MWF

Description

Optimal Transport has gained significant attention in recent years across a range
of applications, particularly in machine learning and deep learning. This course
explores the computational aspects of optimal transport and its variants. Topics will
include the theoretical foundation of optimal transport and the Wasserstein distance,
along with numerical algorithms such as linear programming, duality formulations,
and Sinkhorn’s algorithm. A key focus will be on the dynamic formulation of optimal
transport and variational PDE-based algorithms. Additionally, the course will delve
into connections between optimal transport and various deep generative models,
including Generative Adversarial Networks (GANs), normalizing flows, and diffusion
models. By the end of the course, students will have a deep understanding of both the
theory and practical algorithms for optimal transport, as well as how these methods
integrate with modern deep learning models.

Radon Transforms
Instructor: Professor Plamen Stefanov

Course Number: MA 59500RT
Credits: Three

Time: 3:00–4:15 PM TTh

Description

The Radon transform R maps a function f to its integrals along all (hyper-)planes.
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The associated X-ray transform X integrates f along all lines. A fundamental
problem is the inversion of those transforms in various situations: with full data
(there are explicit formulas then), with incomplete, respectively discrete data, in
presence of noise, etc. Studied first by Radon, and rediscovered by A. Cormack
and G. Hounsfield (the 1979 Nobel prize in Physiology and Medicine), the inversion
of the X-ray transform is the mathematical model of CT (Computed Tomography)
scan, also known as CAT scan. More general transforms, like the X-ray transform
over geodesics of a certain metric appear in various applications, for example in
seismology, and is of its own interest in geometry.

We will start and stay mostly with the Euclidean case. The first part of the course
will study the mapping properties of R and X, extension to distributions (which I
will briefly introduce for those not familiar with them), inversion formulas, stability
estimates, range conditions, support theorems, recovery in a region of interest with
incomplete data. We will study the X-ray transforms of tensor fields, as well, and
explain the motivation. If time permits, I will introduce the light-ray transform:
integrals of functions f(t, x) over light-rays in the Minkowski metric, and discuss its
invertibility.

The second part of the course will concentrate on the weighted X-ray transform
and microlocal considerations. I will introduce some microlocal concepts briefly and
explain what they predict about recovery of singularities (e.g., edges) with incomplete
data, in particular. Numerical examples will be presented.

The course should be accessible to students having good analysis background, in-
cluding some familiarity with functional analysis (Hilbert spaces, linear operators
but no deep knowledge is required), and the Fourier transform. I will follow a book
by me and G. Uhlmann which I will make available online (an older version is on my
website even now). This book is still not published. Relevant books for the first part
of the course are also the classical book by Helgason “Radon Transform’’, available
for free on his webpage, and Natterer’s book “The Mathematics of Computerized
Tomography.’’

Finite Element Methods for Partial Differential Equations
Instructor: Professor Zhiqiang Cai

Course Number: MA/CS 61500
Credits: Three
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Time: 12:00–1:15 PM TTh

Description

The finite element method is the most widely used numerical technique in compu-
tational science and engineering. This course covers the basic mathematical theory
of the finite element method for partial differential equations (PDEs) including vari-
ational formulations of PDEs and construction of continuous finite element spaces.
Adaptive finite element method as well as fast iterative solvers such as multigrid and
domain decomposition for algebraic systems resulting from discretization will also
be presented. When time permits, neural network as a new class of approximating
functions will also be covered.

Prerequisite: MA/CS 514 or equivalent or consent of instructor.

References

[1] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods,
Springer-Verlag, New York, 2002.

[2] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Me-
chanics, Cambridge University Press, New York, 1997.

[3] C. Johnson, Numerical Solution of Partial differential Equations by the Finite
Element Method, Cambridge University Press, Cambridge, 1987.

Algebraic Geometry II
Instructor: Professor Takumi Murayama

Course Number: MA 665
Credits: Three

Time: 10:30–11:45AM TTh

Description

This course is the second course in a two semester introductory sequence in algebraic
geometry. Algebraic geometry is the geometric study of solutions to systems of
polynomial equations. Algebraic geometry has interactions with many other fields
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of mathematics, including commutative algebra, algebraic topology, number theory,
several complex variables, and complex geometry.

This second course will mainly focus on the theory of schemes, including the nec-
essary background on sheaves and their cohomology. Planned topics (subject to
change) include the following: Sheaves of Abelian groups. Locally ringed spaces and
sheaves of modules. Schemes, properties of schemes. Separated, proper, and pro-
jective morphisms of schemes. Cartier and Weil divisors. Sheaves of differentials.
Derived functors and sheaf cohomology. Čech cohomology, cohomology of projective
space. Ext groups and sheaves. Serre duality. Higher direct images. Flat mor-
phisms. Smooth morphisms. Formal schemes, the theorem on formal functions. The
semicontinuity theorem. Applications to curves and surfaces.

Prerequisites: MA 55300, 55400, 55700, 56200, 57100, 57200, and 59500AG.

Text: Course notes will be provided. The notes will largely draw from Algebraic ge-
ometry by Robin Hartshorne (available at https://doi.org/10.1007/978-1-4757-3849-0
via the Purdue library).

Optional texts: All texts listed below have free access options for Purdue students.

• Éléments de géométrie algébrique by Alexander Grothendieck and Jean Dieudonné
(available at http://www.numdam.org).

• Eléments de géométrie algébrique I (second edition) by Alexander Grothendieck
and Jean Dieudonné (available for short term loan at https://n2t.net/ark:
/13960/t42s6kw4b).

On Mapping Class Group
Instructor: Professors Sam Nariman, Lvzhou Chen

Course Number: MA 69700
Credits: Three

Time: 10:30–11:45 AM TTh

Description

This course will be about the mapping class groups of surfaces (i.e. the groups of
homeomorphisms of surfaces up to isotopy), their interesting subgroups (e.g. Torelli,
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surface braid groups, etc), their dynamical properties like Nielsen-Thurston classi-
fication of elements of the mapping class group, their cohomological properties and
their relation to the moduli space of Riemann surfaces. We will start with basic
geometric group theory properties of the mapping class group and their finite pre-
sentations. To do so, we will discuss various complexes of curves on surfaces on which
the mapping class group acts to study the properties of this group. We will prove
the Dehn-Nielsen-Baer theorem that relates the mapping class group to the auto-
morphisms of the fundamental group. After discussing the geometry of surfaces and
a little bit of Teichmuller’s theory, we will discuss the Nielsen-Thurston classification
of elements of the mapping class group.

Depending on the time and interest, after these classical topics, we will venture into
more recent topics on mapping class groups of surfaces. Such topics could include the
proof of Mumford’s conjecture on the cohomology of the moduli space, big mapping
class groups, fine curve complexes, homeomorphisms of surfaces, etc.

We assume some basic knowledge of algebraic topology, differential topology, mani-
folds, and group actions. Some familiarity with hyperbolic geometry can be helpful
but is not required.
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